#начинающий #ноль #чайник — Начинаю с полного нуля


Содержание

Программа обучения для начинающих пользователей

Компьютер «С НУЛЯ»

  • § 1. Что такое операционная система Windows
  • § 2. Из чего состоит компьютер
  • § 3. Что такое файл и папка
  • § 4. Про рабочий стол и значки на нем
  • § 5. Что такое программа
  • § 6. Работа с окнами Windows
  • § 7. Что такое панель задач и раскладка клавиатуры
  • § 8. Как создать папку, переименовать папку и файлы
  • § 9. Копирование папки или файла, знакомство с горячими клавишами
  • § 10. Размер файлов и папок, что такое байт, Кб, Мб, Гб

Интернет «С НУЛЯ»

  • § 1. Что такое Интернет?
  • § 2. Что такое веб-страница, какие бывают виды сайтов
  • § 3. Что такое браузер и для чего он нужен
  • § 4. Ссылки, что такое гиперссылка и как она создается
  • § 5. Как искать информацию в интернете, какие бывают поисковые системы
  • § 6. Как сохранить выделенный текст из интернета
  • § 7. Закладки в браузере: как не потерять сайт
  • § 8. Как отправить электронное письмо

Уроки освоены и кажутся простыми?

Самое время покорять новые вершины!

Для продвинутых пользователей

Программа рассчитана на новичков, впервые сталкивающихся с компьютером «с глазу на глаз». Подробное объяснение базовых действий и принципов. Такая программа подойдет, как пенсионерам, так и молодому поколению, изучающим компьютер «с нуля».

Обучение программированию с нуля: с чего начать изучение в домашних условиях


Каждый раз, с трудом преодолевая жизненные преграды, хочется взять и перекроить этот мир под себя. К сожалению, мы не рождены творцами этой вселенной. Тем, кто хочет удовлетворить свои амбиции создателя, остается лишь виртуальный мир.

Хотя для творения здесь понадобится не столько волшебство и знание рун, сколько знание основ программирования. Поэтому для всех начинающих творцов виртуальной реальности мы поведаем о том, как научиться программировать.

Что нужно знать «чайнику»

Как бы ни хотелось этого признавать, но в реальности программирование является не таким уж волшебным делом. Создание кода порой можно сравнить с хождением босыми ногами по морскому дну, устланному острыми каменными обломками.

Чтобы стать программистом, нужно быть не только умным, но еще терпеливым и настырным. Обучение программированию всегда сопровождается головой болью, красными от недосыпания глазами и отрешенным взглядом. Именно по нему можно легко узнать программиста.

Многие начинающие обучение считают написание кода чуть ли не самой романтической профессией. Особенно увеличилось количество желающих познать программирование после просмотра фильма « Матрица ». Именно главный герой этой картины Нео подтолкнул многих к становлению на путь постижения программных наук:

Но большая часть начавших изучение бросают его уже через несколько недель. И основной причиной этого является неправильно выбранное направление обучения, методика или даже учебник по программированию.

Особенности обучения программированию на постсоветском пространстве

После развала СССР все отечественные ВУЗы долгое время даже и не пытались перекроить свою систему обучения под потребности современного рынка. Не являлись исключением из этого правила и технические ВУЗы.

Программирования как отдельной отрасли и специализации не существовало как таковой. Его основы преподавались лишь как привязка к другим инженерным дисциплинам. И даже те крохи знаний, которые давались студентам в этой области, не соответствовали современным стандартам и утратили свою актуальность еще 20-30 лет назад.

Ситуация кардинально не изменилась и через 10 лет. Лишь некоторые учебные заведения, учуяв веяния нового времени, в начале двухтысячных года начали перекраивать свое обучение под мировые стандарты. И только с этого момента программирование стало восприниматься как отдельная профессия и специализация обучения:

В это же время стали появляться различные специализированные коммерческие курсы и учебные заведения. Но качество преподавания и даваемых в них знаний находились на крайне низком уровне. Не хватало грамотных профессионалов, способных обучить новичков не только теоретическим знаниям, но и практическим навыкам программирования.

А это в профессии программиста является наиболее важным аспектом. Поэтому большинство из сегодняшних гуру российской IT-индустрии начинали свое обучение программированию с нуля самостоятельно.

В некоторой мере такая тенденция сохраняется и по сей день. Хотя в наше время количество профессионалов, занимающихся преподаванием, заметно возросло.

С какого языка начать изучать программирование

Постижение программных наук характеризуется не только тяжелым обучением, но и его началом. Новичку порой трудно не только начать самостоятельное обучение, но и определиться с координатами отправной точки процесса. Поэтому мы постараемся помочь вам обойти все эти трудности:

Прежде чем ломать зубы об гранит науки, следует определиться, с чего начать изучение программирования. На первых этапах очень трудно определиться со специализацией. Поэтому начнем с подбора первого языка.

Чаще всего выбор падает на язык программирования C ( си) . Именно с него большинство новичков во всем мире начинают свое обучение. На основе C было создана основная часть программных языков, и во многом они наследуют его структуру и синтаксис.

Рассмотрим особенности этого языка, делающего его оптимальным для изучения:

  • Простая для понимания основа – часть встроенных возможностей языка для простоты вынесена в отдельно подключаемые библиотеки. К таким элементам относится большая часть математических функций и методов для работы с файловой системой;
  • Оптимально подогнанная система типов – благодаря простому набору типов данных и строгой типизации уменьшается риск допущения ошибок в процессе написания программного кода;
  • Направленность C на процедурный тип программирования, при котором соблюдается четкая иерархия всех элементов кода;
  • Доступ к памяти машины с помощью указателей;
  • Минимальное количество поддерживаемых ключевых слов;
  • Поддержка области действия имен;
  • Поддержка пользовательских типов данных ( объединения и структуры ).

Проще говоря, C – это то, с чего следует начинать новичку перед тем, как научиться программированию на других языках.

Программы (компиляторы) для программирования

Для обучения программированию недостаточно одного лишь желания и наличия компьютера с выходом в интернет. Для написания программ на C вам потребуется специализированное программное обеспечение – компилятор.

Вот несколько специализированных компиляторов с поддержкой языка C:

  • Microsoft Visual Studio – профессиональный инструмент, поддерживающий множество языков, в том числе и несколько серверных. Подойдет для новичков, если брать его «на вырост»:
  • Borland C++ — бесплатный компилятор, идеально подходящий для начинающего обучение. В отличие от предыдущего инструмента, отличается ясным и понятным интерфейсом. Поэтому его освоение не вызовет особых трудностей даже при самостоятельном освоении азов программирования:
  • Code::Blocks – бесплатная среда разработки, поддерживающая написание кода на нескольких языках. Средний по сложности освоения вариант:

Что касается специализированной литературы, то советовать книги определенных авторов мы не будем. Тут, как говорится, выбирайте, что душе угодно. Потому что в большинстве случаев подбор самоучителя по программированию – это индивидуальный процесс. Используйте тот источник, который больше подходит именно для вас.


Да и в интернете можно найти очень много информации. Например, на нашем сайте специализированной литературе по IT тематике посвящен целый раздел.

Тенденции на рынке программирования

После освоения основ программирования у многих сразу появится вопрос, куда двигаться дальше. Уже на этом этапе обучения следует задумываться о выборе основной специализации в области программирования. Вот те, которые больше всего востребованы на современном рынке:

  • Веб-программирование – здесь понадобятся знания PHP , CSS и HTML ;
  • Разработка приложений под мобильную операционную систему Andro >Java . Поэтому потребуется знание основ этого языка;
  • C# (си sharp) – дальний потомок C . На основе C# построена веб-технология ASP.net от Microsoft .

И последний совет всем начинающим. Перед тем, как приступить к обучению программированию с нуля, следует запастить терпением. А также: таблетками от головной боли, кофе, чаем и побрить череп наголо. Потому что во время постижения программных наук, обучающиеся часто вырывают волосы со своей головы вместе с корнем. Удачного старта!

Компьютер для чайников

Сайт «компьютер для чайников» предназначен для начинающих пользователей, желающих овладеть компьютерной грамотностью в короткие сроки. Обучение компьютеру дается в доступном для новичков уровне. Вы получите базовые знания о внутреннем устройстве компьютера, об основах работы операционной системы ПК, о способах обработки, хранения и передачи данных. Научитесь работать с офисными программами от Microsoft. Помимо этого, обучение курсу «компьютер для начинающих», дает знания о защите ПК от вирусов и программ шпионов. Научитесь уверенно пользоваться интернетом и программами, обеспечивающими комфортную работу в сети.

Компьютерная грамотность как часть культуры.

На сегодняшний день, компьютерная грамотность является уже частью культуры. Минимальные компьютерные знания нужны практически во всех сферах деятельности – работе, обучении, в повседневной жизни. Везде необходимо знание компьютера. Изучая материалы сайта, вы освоите компьютер « с нуля» до вполне достаточного уровня, чтобы считаться культурным и современным человеком, способным самостоятельно и уверенно работать с ПК. Перед вами откроется интересный и разнообразный мир высоких информационных технологий.

Компьютер для начинающих. С чего начать изучение?

Вы купили свой первый компьютер и не знаете, как к нему подступиться в силу того, что вы являетесь даже еще не начинающим пользователем, а полным компьютерным чайником, и вам только-только предстоит начать свое обучение с нуля. Самое лучшее – это начать знакомство с ПК со знакомством с его устройством. Далее уже продолжить обучение компьютеру, осваивая его операционную систему и программное обеспечение, которое вам понадобится. В результате вы получите необходимые знания о назначении тех или иных компонентов компьютера, научитесь правильно устанавливать и удалять программы, а также пользоваться ими. Непонятные ранее слова, наподобие: винчестер, флешка, браузер, скайп, торрент и т.д и т.п. станут обыденными в вашем словарном запасе, научитесь уверенно себя чувствовать в интернете. Причем ваше обучение компьютеру будет совершенно бесплатно

Лучшие программы очистки компьютера и оптимизации Windows

Порой наступает то время, когда новенькая и летающая Windows превращается в медленный трактор, который тупит над простейшими задачами и заставляет пользователя изрядно беситься. Оглавление.

7 правил эксплуатации батареи ноутбука

К сожалению, вечной аккумуляторной батареи для ноутбука не существует. Её ещё не изобрели. Но мы можем значительно увеличить срок эксплуатации аккумулятора, соблюдая семь основных.

Как обновить виндовс самому? Простые советы начинающим пользователям

Не все операционные системы работают успешно, поэтому для многих из них разработчики создают новые дополнения и паки, которые во многом улучшают состояние компьютера. Как.

Компьютер в жизни ребенка: за и против

Практически в каждом доме есть компьютер или ноутбук. Множество людей используют эти устройства для работы, поиска информации, просмотра фильмов или прослушивания музыки. То, что.

Как поставить пароль на Windows, убрать его и сбросить

Парольная защита в ОС Windows во многом помогает сохранить важные данные пользователя. Однако в некоторых ситуациях пароль может вовсе мешать работе, создавая массу неудобств.

Как заблокировать доступ к нежелательным сайтам

Пожалуй, каждый обладатель домашнего компьютера с выходом в сеть Интернет сталкивался с ситуацией, когда доступ к определенным сайтам необходимо было пресечь. Очень часто это.

#начинающий #ноль #чайник — Начинаю с полного нуля

для тех, кто ищет курсы:

Войти в аккаунт

Чтобы воспользоваться всеми функциями сайта, вам необходимо зарегистрироваться/войти в свой аккаунт на сайте. Выберите вашу соцсеть для входа:

Если вы организация, проводящая курсы, то регистрация происходит по этой ссылке.


Ноутбуки для чайников

Видео-курс состоит из 12 мини-уроков, которые помогут научиться работать с ноутбуком.

В ходе обучения можно получить знания о переносе файлов, управлении электропитанием, настройках рабочего стола, загрузке снимков с камеры и смартфона, облачном хранении данных в OneDrive и др.

Написать о неактуальной информации.

Курс начинающего электронщика часть 1

Каждый из нас, когда начинает увлекаться чем-то новым, сразу кидается в «пучину страсти» пытаясь выполнить или реализовать непростые проекты самоделок. Так было и со мной, когда я увлекся электроникой. Но как обычно бывает – первые неудачи поубавили запал. Однако отступать я не привык и начал систематически (буквально с азов) постигать таинства мира электроники. Так и родилось «руководство для начинающих технарей»

Шаг 1: Напряжение, ток, сопротивление

Эти понятия являются фундаментальными и без знакомства с ними продолжать обучение основам было бы бессмысленно. Давайте просто вспомним, что каждый материал состоит из атомов, а каждый атом в свою очередь имеет три типа частиц. Электрон — одна из этих частицы, имеет отрицательный заряд. Протоны же имеют положительный заряд. В проводящих материалах (серебро, медь, золото, алюминий и т.д.) есть много свободных электронов, которые перемещаются хаотично. Напряжение является той силой, которая заставляет электроны перемещаться в определенном направлении. Поток электронов, который движется в одном направлении, называется током. Когда электроны перемещаются по проводнику, то они сталкиваются с неким трением. Это трение называют сопротивлением. Сопротивление «ужимает» свободное перемещения электронов, таким образом снижая величину тока.

Более научное определение тока – скорость изменения количество электронов в определенном направлении. Единица измерения тока — Ампер (I). В электронных схемах протекающий ток лежит в диапазоне миллиампера (1 ампер = 1000 миллиампер). Например, свойственный ток для светодиода 20mA.

Единица измерения напряжения – Вольт (В). Батарея – является источником напряжения. Напряжение 3В, 3.3В, 3.7В и 5В является наиболее распространенным в электронных схемах и устройствах.

Напряжение является причиной, а ток – результатом.

Единица измерения сопротивления – Ом (Ω).

Шаг 2: Источник питания

Аккумуляторная батарея — источник напряжения или «правильно» источник электроэнергии. Батарея производит электроэнергию за счет внутренней химической реакции. На внешней стороне у неё присутствуют две клеммы. Одна из них является положительным выводом (+ V), а другая отрицательным (-V), или «землёй». Обычно источники питания бывают двух типов.

Батарейки используются один раз, а затем утилизируются. Аккумуляторы могут быть использованы несколько раз. Батарейки бывают разных форм и размеров, от миниатюрных, используемых для питания слуховых аппаратов и наручных часов до батарей размером с комнату, которые обеспечивают резервное питание для телефонных станций и компьютерных центров. В зависимости от внутреннего состава источники питания могут быть разных типов. Несколько наиболее распространённых типов, используемых в робототехнике и технических проектах:

Цукерберг рекомендует:  Циклы while - Помогите решить задачу Javascript.

Батарейки с таким напряжением могут иметь различные размеры. Наиболее распространённые размеры АА и ААА. Диапазон ёмкости от 500 до 3000 мАч.

3В литиевая «монетка»

Все эти литиевые элементы рассчитаны номинально на 3 В (при нагрузке) и с напряжением холостого хода около 3,6 вольт. Ёмкость может достигать от 30 до 500мAч. Широко используется в карманных устройствах за счёт их крошечных размеров.

Эти батареи имеют высокую плотность энергии и могут заряжаться почти мгновенно. Другая важная особенность — цена. Такие аккумуляторы дешёвые (в сравнение с их размерами и ёмкостями). Этот тип батареи часто используется в робототехнических самоделках.

3.7 В литий-ионные и литий-полимерные аккумуляторы

Они имеют хорошую разряжающую способность, высокую плотность энергии, отличную производительность и небольшой размер. Литий-полимерный аккумулятор широко используется в робототехнике.

Наиболее распространенная форма — прямоугольная призма с округленными краями и клеммами, что расположены сверху. Ёмкость составляет около 600 мАч.

Свинцово-кислотные аккумуляторы являются рабочей лошадкой всей радио-электронной промышленности. Они невероятно дешёвы, перезаряжаются и их легко купить. Свинцово-кислотные аккумуляторы используются в машиностроении, UPS (источниках бесперебойного питания), робототехнике и других системах, где необходим большой запас энергии, а вес не так важен. Наиболее распространенными являются напряжения 2В, 6В, 12В и 24В.

Последовательно-параллельное соединение батарей

Источник питания может быть подключен последовательно или параллельно. При подключении последовательно величина напряжения увеличивается, а когда подключение параллельное – увеличивается текущая величина тока.

Существует два важных момента относительно батарей:

Емкость является мерой (как правило, в Aмп-ч) заряда, хранящейся в батарее, и определяется массой активного материала, содержащегося в ней. Ёмкость представляет собой максимальное количество энергии, которую можно извлечь при определенно заданных условиях. Тем не менее, фактические возможности хранения энергии аккумулятора могут значительно отличаться от номинального заявленного значения, а ёмкость батареи сильно зависит от возраста и температуры, режимов зарядки или разрядки.

Ёмкость батареи измеряется в ватт-часах (Вт*ч), киловатт-часах (кВт-ч), ампер-часах (А*ч) или миллиампер-час (мА * ч). Ватт-час – это напряжение (В) умноженное на силу тока(I) (получаем мощность – единица измерения Ватты (Вт)), которое может выдавать батарея определенный период времени (как правило, 1 час). Так как напряжение фиксируемое и зависит от типа аккумулятора (щелочные, литиевые, свинцово-кислотные, и т.д.), часто на внешней оболочке отмечают лишь Ач или мАч (1000 мАч = 1Aч). Для более продолжительной работы электронного устройства необходимо брать батареи с низким током утечки. Чтобы определить срок службы аккумулятора, разделите ёмкость на фактический ток нагрузки. Цепь, которая потребляет 10 мА и питается от 9-вольтной батареи будет работать около 50 часов: 500 мАч / 10 мА = 50 часов.

Во многих типах аккумуляторов, вы не можете «забрать» энергию полностью (другими словами, аккумулятор не может быть полностью разряжен), не нанося серьезный, и часто непоправимый ущерб химическим составляющим. Глубина разрядки (DOD) аккумулятора определяет долю тока, которая может быть извлечена. Например, если DOD определено производителем как 25%, то только 25% от ёмкости батареи может быть использовано.

Темпы зарядки/разрядки влияют на номинальную ёмкость батареи. Если источник питания разряжается очень быстро (т.е., ток разряда высокий), то количество энергии, которое может быть извлечено из батареи снижается и ёмкость будет ниже. С другой стороны если батарея разряжается очень медленно (используется низкий ток), то ёмкость будет выше.


Температура батареи также будет влиять на ёмкость. При более высоких температурах ёмкость аккумулятора, как правило, выше, чем при более низких температурах. Тем не менее, намеренное повышение температуры не является эффективным способом повышения ёмкости аккумулятора, так как это также уменьшает срок службы самого источника питания.

С-Ёмкость: Токи заряда и разряда любой аккумуляторной батареи измеряются относительно её емкости. Большинство батарей, за исключением свинцово-кислотных, оценено в 1C. Например, батарея с ёмкостью 1000mAh, выдает 1000mA в течение одного часа, если уровень – 1C. Та же батарея, с уровнем 0.5C, выдает 500mA в течение двух часов. С уровнем 2C, та же батарея выдает 2000mA в течение 30 минут. 1C часто упоминается как одночасовой разряд; 0.5C – как двухчасовой и 0.1C – как 10-часовой.

Ёмкость батареи обычно измеряется с помощью анализатора. Анализаторы тока отображают информацию в процентах отталкиваясь от значения номинальной ёмкости. Новая батарея иногда выдает больше 100 % тока. В таком случае, батарея просто оценена консервативно и может выдержать более длительное время, чем указанно производителем.

Зарядное устройство может быть подобрано с точки зрения ёмкости батареи или величины C. Например зарядное устройство с номиналом C/10 полностью зарядит батарею через 10 часов, зарядное устройство с номиналом в 4C, зарядило бы аккумулятор через 15 минут. Очень быстрые темпы зарядки (1 час или менее) обычно требуют того, чтобы зарядное устройство тщательно контролировало параметры аккумулятора, такие как предельное напряжение и температура, чтобы предотвратить перезаряд и повреждения батареи.

Напряжение гальванического элемента определяется химическими реакциями, что проходят внутри него. Например, щелочные элементы – 1.5 В, все свинцово- кислотные – 2 В, а литиевые – 3 В. Батареи могут состоять из нескольких ячеек, поэтому вы редко, где сможете увидеть 2-вольтовую свинцово-кислотную батарею. Обычно они соединены вместе внутри, чтобы выдавать 6 В, 12 В или 24 В. Не стоит забывать о том, что номинальное напряжение в «1.5-вольтовой» батарее типа AA фактически начинается с 1.6 В, затем быстро опускается к 1.5, после чего медленно дрейфует вниз к 1.0 В, при котором батарею уже принято считать ‘разряженной’.

Как лучше выбрать батарею для поделки?

Как вы уже поняли, в свободном доступе, можно найти много типов батарей с разным химическим составом, таким образом, не легко выбрать, какое питание является лучшим для именно вашего проекта. Если проект очень энергозависимый (большие системы звука и моторизованные самоделки) следует выбирать свинцово-кислотную батарею. Если вы хотите построить переносную поделку, которая будет потреблять небольшой ток, то следует выбрать литиевую батарею. Для любого портативного проекта (легкий вес и умеренное питание) выбираем литиево-ионный аккумулятор. Вы можете выбрать более дешёвый аккумулятор на основе метало-никелевого гидрида (NIMH), хотя они более тяжёлые, но не уступают литиево-ионным в остальных характеристиках. Если вы хотели бы сделать энергоёмкий проект то литиево-ионный щелочной (LiPo) аккумулятор будет лучшим вариантом, потому что он имеет маленькие размеры, лёгок по сравнению с другими типами батарей, перезаряжается очень быстро и выдаёт ток высокого значения.

Хотите, чтобы Ваши аккумуляторы прослужили долгое время? Используйте высококачественное зарядное устройство, которое имеет датчики для поддержания надлежащего уровня заряда и подзарядки малым током. Дешёвое зарядное устройство убьёт ваши аккумуляторы.

Шаг 3: Резисторы

Резистор — очень простой и наиболее распространённый элемент на схемах. Он применяется для того, чтобы управлять или ограничивать ток в электрической цепи.

Резисторы — пассивные компоненты, которые только потребляют энергию (и не могут производить её). Резисторы, как правило, добавляются в цепь, где они дополняют активные компоненты, такие как ОУ, микроконтроллеры и другие интегральные схемы. Обычно они используются, чтобы ограничить ток, разделить напряжения и линии ввода/вывода.

Сопротивление резистора измеряется в Омах. Большие значения могут быть сопоставлены с префиксом кило-, мега-, или гига, чтобы сделать значения легко читаемыми. Часто можно увидеть резисторы с меткой кОм и МОм диапазоне (гораздо реже мОм резисторы). Например, 4,700Ω резистор эквивалентен 4.7kΩ резистору и 5,600,000Ω резистор можно записать в виде 5,600kΩ или (более обычно ) 5.6MΩ.

Существуют тысячи различных типов резисторов и множество фирм, что их производят. Если брать грубую градацию то существуют два вида резисторов:

  • с чётко заданными характеристиками;
  • общего назначения, чьи характеристики могут «гулять» (производитель сам указывает возможное отклонение).

Пример общих характеристик:

  • Температурный коэффициент;
  • Коэффициент напряжения;
  • Шум;
  • Частотный диапазон;
  • Мощность;
  • Физический размер.

По своим свойствам резисторы могут быть классифицированы как:

Линейный резистор — тип резистора, сопротивление которого остается постоянным с увеличением разности потенциалов (напряжения), что прикладываются к нему (сопротивление и ток, что проходит через резистор не изменяется от приложенного напряжения). Особенности вольт-амперной характеристики такого резистора — прямая линия.

Не линейный резистор – это резистор, сопротивление которого изменяется в зависимости от значения прикладываемого напряжения или протекающего через него тока. Это тип имеет нелинейную вольт-амперную характеристику и не строго следует закону Ома.

Есть несколько типов нелинейных резисторов:

  • Резисторы ОТК (Отрицательный Температурный Коэффициент) — их сопротивление понижается с повышением температуры.
  • Резисторы ПЕК (Положительный Температурный Коэффициент) — их сопротивление увеличивается с повышением температуры.
  • Резисторы ЛЗР (Светло-зависимые резисторы) — их сопротивление изменяется с изменением интенсивности светового потока.
  • Резисторы VDR (Вольт зависимые резисторы) — их сопротивление критически понижается, когда значение напряжения превышает определенное значение.

Не линейные резисторы используются в различных проектах. ЛЗР используется в качестве датчика в различных робототехнических проектах.

Кроме этого, резисторы бывают с постоянным и переменным значением:

Резисторы постоянного значения — типы резисторов, значение которых уже установлено, при производстве и не может быть изменено во время использования.

Переменный резистор или потенциометр – тип резистора, значение которого может быть изменено во время использования. Этот тип обычно имеет вал, который поворачивается или перемещается вручную для изменения значения сопротивления в фиксированном диапазоне, например, от. 0 кОм до 100 кОм.

Этот тип резистора состоит из «упаковки», в которой содержится два или более резисторов. Он имеет несколько терминалов, благодаря которым может быть выбрано значение сопротивления.


По составу резисторы бывают:

Сердечник таких резисторов отливается из углерода и связующего вещества, создающих требуемое сопротивление. Сердечник имеет чашеобразные контакты, удерживающие стержень резистора с каждой стороны. Весь сердечник заливается материалом (наподобие бакелита) в изолированном корпусе. Корпус имеет пористую структуру, поэтому углеродные композиционные резисторы чувствительны к относительной влажности окружающей среды.

Эти типы резисторов обычно производит шум в цепи за счёт электронов, проходящих через углеродные частицы, таким образом, эти резисторы, не используются в «важных» схемах, хотя они дешевле.

Резистор, который сделан путём нанесения тонкого слоя углерода вокруг керамического стержня — называется углеродо-осаждённым резистором. Он изготавливается путем нагревания керамических стержней внутри колбы метана и осаждением углерода вокруг них. Значение резистора определяется количеством углерода, осажденного вокруг керамического стержня.

Резистор выполнен путем осаждения распыляемого металла в вакууме на керамическую основу прута. Эти типы резисторов очень надежны, имеют высокую устойчивость, а также имеют высокий температурный коэффициент. Хотя они дороже по сравнению с другими, но используются в основных системах.

Проволочный резистор изготовлен путем намотки металлической проволоки вокруг керамического сердечника. Металлический провод представляет собой сплав различных металлов подобранных согласно заявленным особенностям и сопротивлениям требуемого резистора. Эти тип резистора имеет высокую стабильность, а также выдерживает большие мощности, но, как правило, они более громоздкие по сравнению с другими типами резисторов.

Эти резисторы изготовлены путем обжига некоторых металлов, смешанные с керамикой на керамической подложке. Доля смеси в смешанном метало-керамическом резисторе определяет значение сопротивления. Этот тип очень стабилен, а также имеет точно вымеренное сопротивление. Их в основном используют для поверхностного монтажа на печатных платах.

Резисторы, значение сопротивлений которых лежит в пределах допуска, поэтому они очень точны (номинальная величина находится в узком диапазоне).

Все резисторы имеют допуск, который даётся в процентах. Допуск говорит нам, насколько близко к номинальному значению сопротивления может изменяться. Например, 500Ω резистор, который имеет значение допуска 10%, может иметь сопротивление между 550Ω или 450Ω. Если же резистор имеет допуск 1%, сопротивление будет меняться только на 1%. Таким образом, 500Ω резистор может варьироваться от 495Ω 505Ω.

Прецизионный резистор — резистор, у которого уровень допуска всего 0.005%.

Проволочный резистор, разработан таким образом, чтобы легко перегореть, когда номинальная мощность превысет граничный порог. Таким образом плавкий резистор имеет две функции. Когда питание не превышено, он служит ограничителем тока. Когда номинальная мощность превышена, оа функционирует как предохранитель, после перегорания цепь становится разорванной, что защищает компоненты от короткого замыкания.

Теплочувствительный резистор, значение сопротивления которого изменяется с изменением рабочей температуры.

Терморезисторы показывают или положительный температурный коэффициент (PTC) или отрицательный температурный коэффициент (NTC).

Насколько изменяется сопротивление с изменениями рабочей температуры зависит от размера и конструкции терморезистора. Всегда лучше проверить справочные данные, чтобы узнать все спецификации терморезисторов.

Резисторы, сопротивление которых меняется в зависимости от светового потока, что падает на его поверхность. В тёмной среде сопротивление фоторезистора очень высоко, несколько M Ω. Когда интенсивный свет попадает на поверхность, сопротивление фоторезистора существенно падает.

Таким образом фоторезисторы — переменные резисторы, сопротивление которых зависит от количества света, что падает на его поверхность.

Выводные и безвыводные типы резисторов:

Выводные резисторы: Этот тип резисторов использовался в самых первых электронных схемах. Компоненты подключались к выводным клеммам. С течением времени, начали использоваться печатные платы, в монтажные отверстия которых впаивались выводы радиоэлементов.

Резисторы поверхностного монтажа:

Этот тип резистора всё более часто стали использовать начиная с введения технологии поверхностного монтажа. Обычно этот тип резистора создается путём использования тонкоплёночной технологии.

Шаг 4: Стандартные или общие значения резисторов

Система обозначений имеет свои истоки, которые выходят с начала прошлого века, когда большинство резисторов были углеродными с относительно плохими производственными допусками. Объяснение довольно простое – используя 10% допуск можно уменьшить число выпускаемых резисторов. Было бы малоэффективно производить резисторы с сопротивлением 105 Ом, так как 105 находится в пределах 10%-го диапазона допуска резистора на 100 Ом. Следующая рыночная категория составляет 120 Ом, потому что у резистора на 100 Ом с 10%-й терпимостью, будет диапазон между 90 и 110 Ом. У резистора на 120 Ом диапазон лежит между 110 и 130 Ом. По этой логики предпочтительно выпускать резисторы с 10% допуском 100, 120, 150, 180, 220, 270, 330 и так далее (соответственно округлены). Это — ряд E12, показанный ниже.

Терпимость 20% E6,

Терпимость 10% E12,

Терпимость 5% E24 (и обычно 2%-я терпимость),

Терпимость 2% E48,

E96 1% терпимости,

E192 0,5, 0,25, 0,1% и выше допуски.

Стандартные значения резисторов:


Е6 серии: (20% допуска) 10, 15, 22, 33, 47, 68

E12 серии: (10% допуска) 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82

E24 серии: (5% допуска) 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91

E48 серии: (2% допуска) 100, 105, 110, 115, 121, 127, 133, 140, 147, 154, 162, 169, 178, 187, 196, 205, 215, 226, 237, 249, 261, 274, 287, 301, 316, 332, 348, 365, 383, 402, 422, 442, 464, 487, 511, 536, 562, 590, 619, 649, 681, 715, 750, 787, 825, 866, 909, 953

E96 серии: (1% допуска) 100, 102, 105, 107, 110, 113, 115, 118, 121, 124, 127, 130, 133, 137, 140, 143, 147, 150, 154, 158, 162, 165, 169, 174, 178, 182, 187, 191, 196, 200, 205, 210, 215, 221, 226, 232, 237, 243, 249, 255, 261, 267, 274, 280, 287, 294, 301, 309, 316, 324, 332, 340, 348, 357, 365, 374, 383, 392, 402, 412, 422, 432, 442, 453, 464, 475, 487, 491, 511, 523, 536, 549, 562, 576, 590, 604, 619, 634, 649, 665, 681, 698, 715, 732, 750, 768, 787, 806, 825, 845, 866, 887, 909, 931, 959, 976

Цукерберг рекомендует:  Background - Как сделать так, чтобы при наведение на окошко...

E192 серии: (0,5, 0,25, 0,1 и 0,05% допуска) 100, 101, 102, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 132, 133, 135, 137, 138, 140, 142, 143, 145, 147, 149, 150, 152, 154, 156, 158, 160, 162, 164, 165, 167, 169, 172, 174, 176, 178, 180, 182, 184, 187, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, 215, 218, 221, 223, 226, 229, 232, 234, 237, 240, 243, 246, 249, 252, 255, 258, 261, 264, 267, 271, 274, 277, 280, 284, 287, 291, 294, 298, 301, 305, 309, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 357, 361, 365, 370, 374, 379, 383, 388, 392, 397, 402, 407, 412, 417, 422, 427, 432, 437, 442, 448, 453, 459, 464, 470, 475, 481, 487, 493, 499, 505, 511, 517, 523, 530, 536, 542, 549, 556, 562, 569, 576, 583, 590, 597, 604, 612, 619, 626, 634, 642, 649, 657, 665, 673, 681, 690, 698, 706, 715, 723, 732, 741, 750, 759, 768, 777, 787, 796, 806, 816, 825, 835, 845, 856, 866, 876, 887, 898, 909, 920, 931, 942, 953, 965, 976, 988

При разработке оборудования лучше всего придерживаться самого низкого раздела, т.е. лучше использовать E6, а не E12. Таким образом, чтобы число различных групп в любом оборудовании было минимизировано.

ОСНОВЫ ФИЗИКИ ДЛЯ ЧАЙНИКОВ

В настоящее время нет ни одной естественнонаучной или технической области, где в той или иной степени не использовались бы достижения физики. А потому, единственная возможность узнать, как связаны между собой различные области науки и техники, это изучение основ физики. В то же время это и уникальная возможность познакомиться с новыми достижениями физики и их влиянием на другие области науки и техники. Предлагаемый вашему вниманию курс «Физика для чайников» на образовательном ресурсе FIZI4KA.RU удачно преподносит основы физики с нуля, неизменно востребованные все новыми поколениями.

Курс «Физика для чайников» — это не просто учебник, а интерактивный самоучитель по физике для начинающих, который доступен каждому любознательному и трудолюбивому школьнику и тем более студенту. От большинства учебников по физике FIZI4KA выделяется по пяти аспектам:

  1. Полное и последовательное изложение всего курса физики с нуля.
  2. Легкий и свободный стиль изложения физики для начинающих.
  3. Нет сложной математики.
  4. Продуманный подбор иллюстраций, схем и графиков, способствующих лучшему пониманию основ физики.
  5. Использование большого числа примеров и решения задач по физике, имеющих реальное практическое значение в повседневной жизни.

Все эти неоспоримые достоинства делают курс «физика для чайников» незаменимым пособием для самообразования или дополнительного чтения.

Во всех случаях, когда это возможно, законы физики выводятся из основных принципов; таким образом, всюду подчеркивается различие между основными принципами и следствиями из них. В курсе прослеживаются взаимосвязи различных областей физики (а также науки и техники). Независимые на первый взгляд разделы воссоединяются друг с другом и образуют единую картину. При введении каждого нового «закона», например закона магнитном силы, действующей на движущийся заряд, или закона равнораспределения энергии, мы стремимся разъяснить, действительно ли это новый закон, или же его можно вывести, используя уже известным материал. В большинстве случаев, проделав простые действия, удается проследить логическую структуру и замечательное единство всего того, что в противном случае выглядело бы просто как энциклопедическое собрание разнообразных явлений и законов.

Некоторых читателей может смутить рассмотрение в этом курсе таких актуальных вопросов современной физики, как нейтронные звезды, черные дыры, энергия Ферми, сохранение четности, кварки, голография, замедление времени, которые слишком сложны для начинающих студентов. Но мы сочли нужным включить их курс «Физика для чайников«, поскольку все эти вопросы захватывают воображение студентов, узнающих о них из средств массовой информации; это означает, что читатели хотели бы ближе познакомиться с этими проблемами в курсе физики, тем более многие из вопросов современном физики легче усваиваются студентами, чем то, что кроется за третьим законом Ньютона.

Стоит также отметить, что в «физике для начинающих» предпринята попытка связать изучение физики с изучением других областей науки, а также обратить внимание на взаимосвязь науки и общества. Например, центральной темой, пронизывающей весь курс, является проблема сокращения мировых ресурсов энергии. Обсуждаются и другие общественные, политические, экономические и философские предпосылки научного знания. Предлагаемый курс основ физики предназначен не только для того, чтобы заложить теоретические основы будущей профессии студентов: он призван также способствовать общему культурному росту человека, который будет занят в сфере науки и техники!

Программировать с нуля. «Сейчас» — самое подходящее время, чтобы начать

Стив Джобс не написал ни строчки кода, Билл Гейтс — написал. Пол Грэм — первоклассный программист, Питер Тиль — юрист по образованию, сооснователь PayPal и владелец Palantir (написал ли он что-нибудь?), а Илон Маск в детстве написал свою игру и успешно её продал.

Никита truesnow из #tceh сказал мне, что на курсе «Врубаемся в Ruby» они научат программировать любого человека, даже с нуля. Я спросил его: «А с гуманитарием справитесь?» И мы задумались, были ли случаи, когда «гуманитарий» выучил язык программирования?

На ум сразу пришел бомж-программист, но после успеха с его приложением он предпочёл остаться «дзен-монахом». Есть ли еще примеры? Вдохновляющий пример, что научиться кодить может каждый — слепой программист. Когда я прочитал статью на Хабре «Смотря на код с закрытыми глазами», то понял, что нет преград, кроме собственных отмазок.

А у меня для вас есть три истории из моей жизни. Просто три истории.

История первая — ламер

Слово «ламер» я прочитал в «Компьютерре». Там давалось такое определение: «Ламер — отнюдь не безграмотный человек, не умеющий (как бы это помягче выразиться?) программировать». Окрылённый истиной я побежал и рассказал об этом друзьям-одноклассникам, но они предпочли поиграть в футбол, вместо того чтобы освоить суперспособности. Забавно, что потом все они зарабатывали программированием деньги, а я нет. Через неделю я записался в краевую станцию юных техников (КСЮТ), где был кружок по программированию. Там для новичков давали qbasic. А боги прогали на C.

Так вот как-то один из «богов» подозвал меня к монитору и спросил: «Так сможешь?». И показал прогу, которая ждала, когда пользователь введёт в командной строке любой символ, а потом поворачивала его на 90 градусов. Я был ошеломлен.

Наверное, меня это так зацепило, что я решил — во что бы то не стало, выучить все что можно, и стать самым крутым программистом. Заряда хватило на годы. Этот случай я позабыл, прошло несколько лет, и, вспомнив о нем, я написал не больше десятка строк на basic`e минут за 20. Программа работала идеально.

Вывод. Личные отношения с падаванами очень важны. Возможно, ваша простенькая программа определит судьбу человека и повлияет на выбор жизненного пути.

История вторая — первый шифр

Идея пришла внезапно. Пришла так, что не смог заснуть и сел кодить. Из шифров тогда я знал только про пляшущих человечков из Шерлока Холмса (а это класс 8 или 9, занимался программированием полгода-год). Мне захотелось написать шифр, чтобы нельзя было так просто его вскрыть простым анализом.

Задумка была следующая: каждой букве русского алфавита мы приписываем массив из 5 символов в виде букв русского и английского языка, спецсимволы. При шифровании мы рандомно выбираем один из них. Получалась «расширенная» простая замена. Это сейчас мне понятно как его ломать, но тогда для меня была запредельная высота. Через 3-4 года я поступлю на компьютерную безопасность.

Вывод. Решать интересные задачи — это круто. Но гораздо круче придумывать и находить задачи самому.

История третья — триумф BASIC`а


Я уже 2 года «занимался» программированием. И тут в школе появилась… информатика. Меня почему-то отправили в слабую группу. Как узнал позже, моё лицо не понравилось преподавательнице и она посчитала, что я тупой. Мои друзья ворвались в кабинет к директору и сказали, что я занял призовое место на краевой олимпиаде по программированию. Начались, разборки, но мне было так пофиг, что я остался в слабой группе, где учили вводить цифры в Exсel. За первую неделю я сдал всю программу и спокойно ходил играть в Diablo 2 в компьютерный клуб.

А на олимпиаде был забавный случай. Разрешённые языки — C, Pascal, а я то был прожжённым бейсичником. Выкрутился. Задачу принимали в виде exe’шника, а я подсуетился и нашёл бейсик, который кует exe’шники. Программы проходили тесты, а сами тесты принимались на серваке. Одна задача была сугубо вычислительная. Давались координаты центров и радиусы двух окружностей. Требовалось выдать взаимное расположение окружностей в текстовом виде: пересекаются, касаются, одна в другой, совпадают, и прочие.

С формулами было возиться лень, и недавно я как раз разбирался с графикой. Задачу решил графически, рисовал окружность одним цветом, а потом «сканировал» попиксельно по второй окружности, втыкаюсь ли я в уже окрашенный пиксель. Был большой страх, что прога не сможет работать на серваке без монитора, но все обошлось — 10 тестов из 10. На разборе задач был звездный час. Полсотни человек решили задачу один в один как автор, какого же было их удивление, когда я рассказал свой способ.

Вывод. Школа — зло. Результат — круто. Нестандартное мышление — прикольно. Обходной путь есть всегда.

Зачем взрослым учиться программировать

У меня есть три ответа на этот вопрос. Они зависят от горизонта планирования:

— Цель на 1 неделю или месяц — это вызов. Это как пробежать марафон или забраться на Эльбрус, проверить не засохли ли мозги, выйти из зоны комфорта.

— Цель на год-два — это бабло. За это время можно научиться создавать ценность и работать удаленно. Или учить других. Очень многие хотят научиться программировать.

сам поискал 8 сентября:

на русском в 1000 раз меньше:

— Цель на 5-10 лет — развитие в целом. Во-первых, вы улучшите своё мышление. Во-вторых, вы сделаете неоценимый подарок детям. Они получат несколько лет форы в изучении программирования и у вас появится много чудных моментов совместного написания программ. Для полного счастья останется научиться играть в компьютерные игры, но это вы скорее всего уже умеете.

Как научиться программировать

Есть заезженная картинка на этот счёт:

Почему-то все сразу начинают советовать Кнута, Кормена и прочее, но неподготовленный человек сможет осилить только предисловие. Если совсем проблемы с самооценкой возьмите детскую книгу и напишите игру.

Если готовы приступить по-взрослому, то есть множество ресурсов для самообучения. От Coursera (раз, два) до всяких %имя%academy (codeacademy, htmlacademy и пр)

Если намерения совсем серьёзные, могу посоветовать курс «Врубиться в Ruby».

Во-первых, есть живой преподаватель с хорошим бэкграундом в разработке. Виталий Куреннов, 6 лет пишет на Ruby и больше года обучает всех желающих этому навыку, работал над Ruby проектами для Nokia и Avaya.
Во-вторых, есть группа единомышленников, работая бок о бок с которыми, у вас многократно повысятся шансы дойти до победного конца и освоить программирование до того уровня, когда оно начнет приносить прибыль.

— Никита, почему именно Ruby?
— Все просто, мы нашли очень хорошего преподавателя.

Про Ruby
Попробовать сделать первые шаги можно прямо сейчас, займет всего 5-10 минут.

Нашел шикарный ресурс с геймификацией и сразу из браузера tryruby.org
За 5 минут выполняем несколько заданий, получаем ачивку и переходим на следующий уровень.

«Однако я не думаю, что смогу убедить кого-нибудь (старше 25) выучить Lisp.» Пол Грэм, «Побеждая посредственность»

Нашёл для себя удобную браузерную обучалку Learn Lisp The Hard Way

«За те годы, что я проработал в Viaweb, я прочитал множество объявлений о найме на работу. Примерно каждый месяц появлялся новый конкурент. Первое, что я делал после того, как проверял, доступна ли онлайновая демонстрация работы их программы, — смотрел список их вакансий. Через пару лет я научился отличать опасных конкурентов от неопасных. Чем больше отдавало IT-мэйнстримом от описания требуемых кандидатур, тем менее опасна была компания. Самыми безопасными были те, кому требовались специалисты по Oracle. О таких не стоило беспокоиться. Также мы были спокойны, если требовались разработчики на C++ или Java.

Если требовались программисты на Perl или Python, это уже было слегка пугающе — это значило, что компанией или, по крайней мере, ее технической частью заправляли настоящие хакеры. Если бы я когда-нибудь увидел объявление о найме на работу Lisp-хакеров, я бы обеспокоился не на шутку.» Пол Грэм, «Побеждая посредственность»

Ещё пара советов

Общие упражнения:
Project Euler содержит более 500 математических задач (на теорию чисел, числовых систем и пр.), которые нужно решить, используя программирование на любом языке.
Code Abbey хранит более 200 задач по программированию. За решения 125 из них выдают сертификат, чем мотивируют многих студентов.
Rosalind — это ещё один сайт наподобие Project Euler, который предоставляет на выбор более 200 задач по биоинформатике.
Codingbat.com дарит упражнения по Java и Python, как для новичков, так и для продвинутых программистов.
codegolf.stackexchange.com – сайт, на котором публикуют и обсуждают программистские головоломки.
Ruby Quiz — серия головоломок, в которых вас просят написать короткие программы различной сложности. Исходные решения описаны на Ruby, но их можно реализовать на любом языке.

Задачи из олимпиад по программированию:
UVa Online Judge — коллекция из сотен задач с олимпиад по программированию, с онлайн-системой проверки решений.
TopCoder содержит сложные задачи на алгоритмы, собранные годами с разных соревнований. Также несколько раз в месяц проводит олимпиады по программированию.
CodeForces похож на TopCoder, но содержит больше задач на соревнованиях и несколько особых фишек, включая «виртуальные соревнования».
Timus — то же, что и UVA. Содержит задачи с последних соревнований (мирового и регионального уровня).
SPOJ — похож на UVA, с огромным числом языков программирования на выбор.
USACO содержит несколько задач на алгоритмы с руководством по их решению.

Под определённые языки:
Для Prolog, Lisp и подобных языков посетите P-99 и L-99, наборы из 99 задач для повышения вашей эффективности в данных языках.
Python Challenge — объединяет загадки и головоломки, которые помогут вам серьёзно прокачаться в Python.
4Clojure — набор упражнений по программированию, специально разработанных под Clojure, Lisp-подобный язык.

Электротехника для начинающих


Понятно желание людей любого возраста постичь такую науку, как электротехника. Помогут в этом основы электротехники для всех начинающих. В интернете и печати публикуется масса материалов, часто под заглавием «Электротехника для чайников». Начинать нужно с усвоения положений и законов электричества.

Понятия и свойства электрического тока

Начальные курсы электрика в первых главах дают определения понятию и свойствам электрического тока, объясняют природу и свойства электроэнергии, законы электричества и их основные формулы. Основываясь на великих открытиях, зарождалась и получила грандиозное развитие такая научная дисциплина, как электротехника. Сущность электричества заключена в направленном перемещении электронов (заряженных частиц). Они переносят электрический заряд в теле металлических проводов.

Важно! Для транзита электрической энергии используют провода, жилы которых сделаны из алюминия или меди. Это самые экономичные проводные металлы. Делать жилы проводов из других материалов дорого, поэтому невыгодно.

Ток бывает постоянного и переменного направления. Постоянное движение энергии всегда осуществляется в одном направлении. Переменный энергетический поток ритмично меняет свою полярность. Скорость, с которой меняется направление движения электронов, называют частотой. Её измеряют в герцах.

Что изучает электротехника

Основа электрики формировалась в XIX веке. Те времена называют эпохой грандиозных открытий основополагающих законов, дающих все представления об электричестве. Электротехника (ЭТ) как наука начинала делать свои первые шаги. Теория стала подкрепляться практикой. Появились первые электротехнические устройства, совершенствовались коммуникационные системы доставки электроэнергии от источника потребителю.

Базой развития электротехники стали достижения в области физики, химии и математики. Новая наука изучала свойства электрического тока, природу электромагнитных излучений и другие процессы. По мере накопления знаний ЭТ становилась наукой прикладного характера.

Современная научная дисциплина изучает устройства, в которых используется электрический ток. На основании исследований создаются новые более совершенные электротехнические установки, приборы и устройства. ЭТ – одна из передовых наук, являющаяся одним из основных двигателей прогресса человеческой цивилизации.

С чего начать изучение основ электротехники

Электротехника для начинающих доступна на многих информационных носителях. Современные средства массовой информации не испытывают дефицита в учебных пособиях по основам электричества. Самоучители по электрике приобретают в сети интернет или книжных магазинах. Уроки электрика новичок может получить в виде бесплатного видеокурса об основах электричества через интернет. Онлайн видео лекции в доступной форме обучают всех желающих основам электричества.

Обратите внимание! Книга, несмотря на доступные видеоресурсы в сети, до сих пор считается самым удобным источником информации. Пользуясь самоучителем по электрике с нуля, не нужно всё время включать ПК. Учебник всегда будет под рукой.

Самоучители служат незаменимыми помощниками для того, чтобы отремонтировать электропроводку, починить выключатель, розетку, установить датчик движения и заменить предохранители в бытовых электроприборах.

Основные характеристики тока

К основным характеристикам относятся сила тока, напряжение, сопротивление и мощность. Параметры электрического тока, протекающего по проводу, характеризуются именно этими величинами.

Сила тока

Параметр означает количество заряда, проходящего по проводу, за определённое время. Силу тока измеряют в амперах.

Напряжение

Это есть не что иное, как разница потенциалов между двумя точками проводника. Величина измеряется в вольтах. Один вольт – эта разность потенциалов, при которой для переноса заряда в 1 кулон потребуется произвести работу, равную одному джоулю.

Сопротивление

Этот параметр измеряется в омах. Его величина определяет сопротивление энергопотоку. Чем больше масса и площадь поперечного сечения проводника, тем больше сопротивление. Оно также зависит от материала и длины провода. При разнице потенциалов на концах проводника в 1 Вольт и силе тока 1 Ампер сопротивление проводника равно 1 Ому.

Мощность

Физическая величина выражает скорость протекания электроэнергии в проводнике. Мощность тока определяется произведением силы тока и напряжения. Единица мощности – ватт.

Закон Ома

Постижение основ электротехники нужно начинать с закона Ома. Именно он является фундаментом всей науки об электричестве. Выдающийся немецкий физик Георг Симон Ом в 1826 году сформулировал закон, в котором определяет взаимозависимость трёх основных параметров электрического тока: силы, напряжения и сопротивления.

Энергия и мощность в электротехнике

Электрика для начинающих даёт разъяснения терминов энергии и мощности. Эти характеристики напрямую связаны с законом Ома. Энергия может перетекать из одной в другую форму. То есть она может быть ядерной, механической, тепловой и электрической.

В динамиках звуковых устройств потенциал электрического тока преобразовывается в энергию звуковых волн. В электродвигателях токовый энергопоток превращается в механическую энергию, которая заставляет вращаться ротор мотора.

Любые электрические устройства потребляют нужное количество электроэнергии в течение определённого временного промежутка. Количество потреблённой энергии в единицу времени является мощностью потребителя электричества. Более подробное толкование мощности можно найти в главах учебного пособия, посвящённых электромеханике для начинающих.


Мощность определяют по формуле:

Измеряется этот параметр в ваттах. Единица измерения мощности Ватт означает, что ток силой в один Ампер перемещается под напряжением 1 Вольт. При этом сопротивление проводника равно 1-му Ому. Такая трактовка характеристики тока наиболее понятна для начинающих постигать основы электричества.

Электротехника и электромеханика

Электрическая механика – это раздел электротехники. Эта научная дисциплина изучает принципиальные схемы оборудования, двигателей и прочих приборов, использующих электрическую энергию.

Пройдя курс электромеханики для начинающих, новички могут самостоятельно научиться ремонтировать бытовые электрические устройства и приборы. Основные законы электромеханики дают возможность понять, как устроен электродвигатель, чем отличается трансформатор от стабилизатора, что такое генератор и многое другое.

Дополнительная информация. Несомненную пользу новичкам принесут учебные пособия и видео курсы по электротехнике и электромеханике. Если есть друзья или знакомые, разбирающиеся в этом деле, то это только поможет быстро освоить азы этих дисциплин.

Безопасность и практика

Основы электротехники для начинающих делают особое ударение на правилах техники безопасности. Их несоблюдение на практике порой может стать причиной получения электротравм и повреждения имущества. Для новичков в электротехнике надо следовать четырём основным требованиям ТБ.

Четыре правила техники безопасности для новичков:

  1. Перед работой с каким-либо устройством или оборудованием следует ознакомиться с его документацией. Все руководства по эксплуатации имеют раздел безопасности. В нём описаны опасные действия, которые могут вызвать короткое замыкание или удар электрическим током.
  2. Прежде, чем приступать к работе с электротехническими устройствами или электропроводкой, нужно отключить электричество. Затем произвести осмотр состояния изоляции проводников. Если обнаружено нарушение изоляционного покрытия, то оголённую часть проводников надо покрыть отрезком изоляционной ленты.
  3. При работе с проводкой и оборудованием под напряжением бытовой электросети надо использовать диэлектрические перчатки, защитные очки и обувь на толстой резиновой подошве. В электрораспределительных шкафах, щитах и электроустановках новичкам вообще делать нечего. Ими занимаются квалифицированные электрики, которые имеют допуск к работе под напряжением.
  4. Ни в коем случае нельзя касаться оголённых проводников руками. Для этого есть отвёртки-пробники, мультиметры и другие электроизмерительные приборы. Только убедившись в отсутствии напряжения, можно касаться проводов.

Электрика для чайников

Электроника окружает человека в виде различных устройств и приборов. Современная бытовая техника в большинстве своём управляется с помощью электронных схем. Курсы обучения основам электроники для начинающих нацелены на то, чтобы новичок мог отличать транзистор от резистора и понимать, как и для чего служит та или иная электронная схема.

Учебные пособия и видеокурсы способствуют пониманию принципов построения электронных схем. Что такое печатная плата, как создать схему своими руками – на все эти вопросы отвечают основы электроники для новичков. Усвоив азы электроники, домашний «мастер» сможет определить вышедшую из строя радиодеталь в телевизоре, аудио устройстве и другой бытовой технике и заменить её. Кроме этого, новичок приобретёт опыт работы с паяльником.

Видеокурсы, печатная продукция несут в себе массу информации по освоению основ электротехники, электромеханики и электроники. Приобрести знания в этих сферах можно, не выходя из дома. Просмотреть нужное видео, заказать учебники позволяет доступность сети интернета.

Основы электротехники для начинающих

Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины.

Получить знания в этой области помогут основы электротехники для начинающих, изложенные доступным языком. Подкрепленные историческими фактами и наглядными примерами, они становятся увлекательными и понятными даже для тех, кто впервые столкнулся с незнакомыми понятиями. Постепенно продвигаясь от простого к сложному, вполне возможно изучить представленные материалы и использовать их в практической деятельности.

Понятия и свойства электрического тока

Электрические законы и формулы требуются не только для проведения каких-либо расчетов. Они нужны и тем, кто на практике выполняет операции, связанные с электричеством. Зная основы электротехники можно логическим путем установить причину неисправности и очень быстро ее устранить.

Суть электрического тока заключается в движении заряженных частиц, переносящих электрический заряд от одной до другой точки. Однако при беспорядочном тепловом движении заряженных частиц, по примеру свободных электронов в металлах, переноса заряда не происходит. Перемещение электрического заряда через поперечное сечение проводника происходит лишь при условии участия ионов или электронов в упорядоченном движении.

Электрический ток всегда протекает в определенном направлении. О его наличии свидетельствуют специфические признаки:

  • Нагревание проводника, по которому протекает ток.
  • Изменение химического состава проводника под действием тока.
  • Оказание силового воздействия на соседние токи, намагниченные тела и соседние токи.

Электрический ток может быть постоянным и переменным. В первом случае все его параметры остаются неизменными, а во втором – периодически происходит изменение полярности от положительной к отрицательной. В каждом полупериоде изменяется направление потока электронов. Скорость таких периодических изменений представляет собой частоту, измеряемую в герцах

Основные токовые величины

При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется силой тока, измеряемой в амперах.

Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как напряженность электрического поля. Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица – вольт. Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление, измеряемое в омах. Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока – 1 А.

Закон Ома

Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и мощность. Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

  1. Сила тока: I = U/R (ампер).
  2. Напряжение: U = I x R (вольт).
  3. Сопротивление: R = U/I (ом).

Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким – на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов – напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

Энергия и мощность в электротехнике

В электротехнике существуют еще и такие понятия, как энергия и мощность, связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P = I x U, единицей измерения служит ватт. Он означает перемещение одного ампера одним вольтом через сопротивление в один ом.

Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

Электроника для начинающих

Курс начинающего электронщика.

Электроника для начинающих, представляет информацию без которой начинающему электронщику не обойтись, понятие электрического тока, описание радиокомпонентов, обозначение на электронных схемах все это основы электроники. Все эти знания пригодятся тебе, когда ты начнешь разрабатывать и собирать электронные схемы.

Осн овы электроники

Ч то нужно для того чтобы самостоятельно изучить электронику совершенно не обладая начальными знаниями как говорится “с нуля”. Нужно желание и большая любовь к тому чем ты занимаешься. А что может дать нам импульс для возникновения столь сильного чувства, это конечно же результат.

Результат можно получить через какое — то время, двигаясь от простого к сложному поднимаясь по ступенькам пирамиды, у которой первые ступени — это основа электроники, только вот не у всех хватит терпения дойти до вершины, поэтому стоит попробовать поступить в обратном порядке.

Когда — то много лет назад я познакомился с “радиохулиганом” (кто не знает — это так называли тех, кто выходил в эфир без официального разрешения, они общались в эфире и крутили музыку Высоцкого и пр.) и меня это увлекло. Я попросил его научить меня как собрать радиоприемник, и он помог мне собрать простой детекторный приемник. Он работал! Принимал несколько радиостанций, радости не было предела, возможно это и был тот результат который не дал мне бросить увлечение. Потом я уже самостоятельно собирал более сложные электронные схемы, в общем то не особо владея знаниями в области электроники, и только со временем постепенно читая книги и журналы из разряда электроника для начинающих постигал сию премудрость. Так что не бойся, пробуй свои силы и у тебя все получится — Это НЕ сложно!

В разделе сайта электроника для начинающих предоставлена краткая и самая необходимая информация, все рассказано простыми словами.

Установка антенн

Кроме занятий по электронике много полезной информации касающееся приема телевизионного сигнала. Телевизионные антенны и все, что нужно знать о них, так же тесты и обзоры оборудования для приема цифрового телевидения.

Понравилась статья? Поделиться с друзьями:
Все языки программирования для начинающих