Java — Графический интерфейс в NetBeans


Содержание

Графический интерфейс на Java Swing — GUI Tutorial

В Java есть 2 основных пакета для создания графических интерфейсов (Graphics User Interface). Это Abstract Windows Toolkit (AWT) и Swing. AWT использует виджеты операционной системы, поэтому эта библиотека немного быстрее. Но на мой взгляд, Swing более хорошо спроектирован.

В данном туториале мы рассмотрим основные элементы библиотеки Swing и создадим простой интерфейс (GUI) в качестве примера.

Для группировки компонент интерфейса используются контейнеры (Container). Для создания основного контейнера для приложения чаще всего используется контейнер JFrame (есть еще JWindows и JApplet). Проще всего унаследоваться от JFrame тем самым получить доступ ко множеству методов, например:

setBounds(x, y, w, h) — указывает координаты верхней левой вершины окна, а также его ширину и высоту.

setResizable(bool) — указывает, можно ли изменять размер окна.

setTitle(str) — устанавливает название окна.

setVisible(bool) — собственно отображает окно.

setDefaultCloseOperation(operation) — указывает операцию, которая будет произведена при закрытии окна.

Основные элементы управления:

  • JLabel — элемент для отображения фиксированного текста;
  • JTextField — простой edit-box;
  • JButton — обычная кнопка (button);
  • JCheckBox — элемент выбора (аналог checkbox);
  • JRadioButton — радио кнопка

Как видите, все довольно просто и логично.

При отображении элементов управления используются специальные менеджеры — LayoutManager. У всех LayoutManager’ов есть методы для добавления у удаления элементов.

FlowLayout — используется для последовательного отображения элементов. Если элемент не помещается в конкретную строку, он отображается в следующей.

GridLayout — отображения элементов в виде таблицы с одинаковыми размерами ячеек.

BorderLayout — используется при отображении не более 5 элементов. Эти элементы располагаются по краям фрейма и в ценрте: North, South, East, West, Center.

BoxLayout — отображает элементы в виде рядка или колонки.

GridBagLayout — позволяет назначать месторасположение и размер каждого виджета. Это самый сложный, но и самый эффективный вид отображения.

Стоит еще обратить внимание на обработку событий. Для этого используются так называемые Event Listeners.

Ну все, довольно теории, перейдем к примеру GUI:

getContentPane возвращает контейнер верхнего уровня. ButtonGroup служит для создания группы взаимосвязанных радио-кнопок.

Внутренний класс ButtonActionListener реализует интерфейс ActionListener. Для этого необходимо предоставить имплементацию метода actionPerformed.

JOptionPane служит для отображения диалоговых окон.

Жду ваших вопросов и комментариев. Если вы хотите больше узнать о Swing, скажите об этом, и в скором времени я напишу еще одну статью с более сложными приемами и компонентами.

Создание в NetBeans приложения Java с графическим интерфейсом

Экранной формой называется область, которая видна на экране в виде окна с различными элементами — кнопками, текстом, выпадающими списками и т.п. А сами эти элементы называются компонентами.

Среды, позволяющие в процессе разработки приложения в интерактивном режиме размещать на формы компоненты и задавать их параметры, называются RAD-средами. RAD расшифровывается как Rapid Application Development — быстрая разработка приложений.

В NetBeans и других современных средах разработки такой процесс основан на объектной модели компонентов, поэтому он называется Объектно-Ориентированным Дизайном (OOD – Object-Oriented Design).

NetBeans является RAD-средой и позволяет быстро и удобно создавать приложения с развитым графическим пользовательским интерфейсом (GUI). Хотя языковые конструкции Java, позволяющие это делать, не очень просты, на начальном этапе работы с экранными формами и их элементами нет необходимости вникать в эти тонкости. Достаточно знать основные принципы работы с такими проектами.

С точки зрения автора изучение того, как создавать приложения с графическим интерфейсом, весьма важно для начинающих программистов, и это следует делать с самых первых шагов по изучению Java.

Во-первых, с самого начала осваивается создание полноценных приложений, которые можно использовать в полезных целях. Трудно месяцами изучать абстрактные концепции, и только став профессионалом иметь возможность сделать что-то такое, что можно показать окружающим. Гораздо интереснее и полезнее сразу начать применять полученные знания на практике.

Во-вторых, такой интерфейс при решении какой-либо задачи позволяет лучше сформулировать, какие параметры надо вводить, какие действия и в какой последовательности выполнять, и что в конце концов получается. И отобразить все это на экране: вводимым параметрам будут соответствовать пункты ввода текста, действиям – кнопки и пункты меню, результатам – пункты вывода текста.

Рис. 11.5. Пример открытия проекта с существующим исходным кодом

В NetBeans 5.0 имелся хороший пример GUI-приложения, однако в NetBeans 5.5 он отсутствует. Поэтому для дальнейшей работы следует использовать пример JavaApplicationGUI_example, ссылка на который дана в начале лекции.

Сначала следует распаковать zip-архив, и извлечь находящуюся в нем папку с файлами проекта в папку с вашими проектами (например, C:\Documents and Settings\User). Затем запустить среду NetBeans, если она не была запущена, и закрыть имеющиеся открытые проекты, чтобы они не мешали. После чего выбрать в меню File/Open Project, либо или на панели инструментов иконку с открывающейся фиолетовой папочкой, либо нажать комбинацию клавиш + +O. В открывшемся диалоге выбрать папку JavaApplicationGUI_example (лучше в нее не заходить, а просто установить выделение на эту папку), после чего нажать кнопку Open Project Folder.

При этом, если не снимать галочку «Open as Main Project», проект автоматически становится главным.

В окне редактора исходного кода появится следующий текст:

/* * GUI_application.java * * Created on 22 Июня 2010 г., 13:41 */ package java_gui_example; /** * * @author Вадим Монахов */ public class GUI_application extends javax.swing.JFrame < /** * Creates new form GUI_application */ public GUI_application() < initComponents(); >/** This method is called from within the constructor to * initialize the form. * WARNING: Do NOT modify this code. The content of this method is * always regenerated by the Form Editor. */ +Generated Code private void exitMenuItemActionPerformed(java.awt.event.ActionEvent evt) < System.exit(0); >/** * @param args the command line arguments */ public static void main(String[] args) < java.awt.EventQueue.invokeLater(new Runnable() < public void run() < new GUI_application().setVisible(true); >>); > // Variables declaration — do not modify private javax.swing.JMenuItem aboutMenuItem; private javax.swing.JMenuItem contentsMenuItem; private javax.swing.JMenuItem copyMenuItem; private javax.swing.JMenuItem cutMenuItem; private javax.swing.JMenuItem deleteMenuItem; private javax.swing.JMenu editMenu; private javax.swing.JMenuItem exitMenuItem; private javax.swing.JMenu fileMenu; private javax.swing.JMenu helpMenu; private javax.swing.JMenuBar menuBar; private javax.swing.JMenuItem openMenuItem; private javax.swing.JMenuItem pasteMenuItem; private javax.swing.JMenuItem saveAsMenuItem; private javax.swing.JMenuItem saveMenuItem; // End of variables declaration>

Поясним некоторые его части. Указание пакета java_gui_example, в котором будет располагаться код класса приложения, нам уже знакомо. Декларация самого класса GUI_application в данном случае несколько сложнее, чем раньше:

Она означает, что задается общедоступный класс GUI_application, который является наследником класса JFrame, заданного в пакете swing, вложенном в пакет javax. Слово extends переводится как «расширяет» (класс-наследник всегда расширяет возможности класса-прародителя).

Общедоступный конструктор GUI_application() создает объект приложения и инициализирует все его компоненты, методом initComponents(), автоматически генерируемом средой разработки и скрываемом в исходном коде узлом +Generated Code. Развернув узел, можно увидеть реализацию этого метода, но изменить код нельзя. Мы не будем останавливаться на том, что в нем делается.

Далее следует закрытый (private) метод

private void exitMenuItemActionPerformed

Он будет обсуждаться чуть позже. Метод

public static void main(String[] args)

нам уже знаком – это главный метод приложения. Он является методом класса нашего приложения и автоматически выполняется Java-машиной при запуске приложения. В данном примере метод создает экранную форму приложения и делает ее видимой. Для того, чтобы понять, как это делается, потребуется изучить довольно много материала в рамках данного курса.

Далее следует область объявления компонентов– пунктов меню нашей формы. Она автоматически создается в исходном коде редактором экранных форм и недоступна для изменения в редакторе исходного кода.

Читайте также:
  1. IV. Приложения.
  2. NetBeans IDE
  3. Быстрое создание отправного пункта
  4. Внешний вид приложения
  5. ВОДА И СОЗДАНИЕ ЖИРОВЫХ ЗАПАСОВ
  6. Воссоздание Банков в реальном мире
  7. Воссоздание земных поселений
  8. ГЛАВА 12. Создание человека
  9. Глава 8. Создание стратегии для Avon
  10. Задание 1-1: Создание перспективы в Eclipse
Рис. 11.6. Запущенное приложение Рис. 11.7. Приложение с раскрытым меню

При запуске приложения экранная форма выглядит так, как показано на рисунке. В ней уже имеется заготовка меню, которое способно разворачиваться и сворачиваться, и даже работает пункт Exit – «Выход». При нажатии на него происходит выход из приложения.

Именно за нажатие на этот пункт меню несет ответственность оператор exitMenuItemActionPerformed. При проектировании экранной формы он назначен в качестве обработчика события – подпрограммы, которая выполняется при наступлении события. В нашем случае событием является выбор пункта меню Exit, и при этом вызывается обработчик exitMenuItemActionPerformed. Внутри него имеется всего одна строчка

Она вызывает прекращение выполнения метода main и выход из приложения с нулевым кодом завершения. Как правило, ненулевой код завершения возвращают при аварийном завершении приложения для того, чтобы по его значению можно было выяснить причины «вылета» программы.

Дата добавления: 2015-09-11 ; просмотров: 3 | Нарушение авторских прав

Объектно-ориентированное проектирование и платформа NetBeans

2.7. Структура проекта NetBeans

Рассмотрим, из каких частей состоит проект NetBeans. На рисунке показаны основные элементы, отображаемые в среде разработки.

Это Source Packages (пакеты исходного кода), Test Packages (пакеты тестирования), Libraries (библиотеки) и Test Libraries (библиотеки поддержки тестирования). Ветви дерева представления элементов проекта можно разворачивать или сворачивать путем нажатия на узлы, отмеченные плюсами и минусами. Мы пока будем пользоваться только пакетами исходного кода.

В компонентной модели NetBeans пакеты приложения объединяются в единую конструкцию – модуль . Модули NetBeans являются базовой конструкцией не только для создания приложений, но и для написания библиотек. Они представляют собой оболочку над пакетами (а также могут включать в себя другие модули).

В отличии от библиотек Java скомпилированный модуль – это не набор большого количества файлов, а всего один файл , архив JAR ( Java Archive, архив Java ). В нашем случае он имеет то же имя, что и приложение , и расширение . jar : это файл JavaApplication1.jar. Модули NetBeans гораздо лучше подходят для распространения, поскольку не только обеспечивают целостность комплекта взаимосвязанных файлов, но и хранят их в заархивированном виде в одном файле, что намного ускоряет копирование и уменьшает объем занимаемого места на носителях.

Отметим не очень удобную особенность NetBeans – после сохранения проекта и закрытия среды разработки не сохраняется конфигурация открытых окон и развернутых деревьев проекта — деревья проектов показываются в свернутом виде. Поэтому для того, чтобы вновь попасть в режим редактирования исходного кода нашего приложения, в окне Projects, «Проекты» (левом верхнем окне среды разработки) следует развернуть последовательность узлов JavaApplication1/Source Packages/javaapplication1/. Это делается нажатием на плюсики в соответствующих узлах или двойным щелчком по имени узла. Затем надо сделать двойной щелчок с помощью левой кнопкой мыши по имени узла Main.java, либо с помощью щелчка правой кнопкой мыши по этому имени открыть всплывающее меню и выбрать в нем первый пункт – «Open».

Имеется и более простой способ. По умолчанию сначала открывается окно Welcome («Привет», «Приветствие»). Но среда разработки сохраняет список открытых окон, и в верхней части окна редактирования кода щелчком мыши можно выбрать нужное имя окна . Хотя при этом не видна структура проекта, так что первый способ во многих случаях может быть предпочтительным (однако, вы можете увидеть открытый файл в структуре проекта, если нажмёте ctrl+ shift +1).

Если вы открываете новый проект, старый не закрывается. И в дереве проектов видны все открытые проекты. То же относится и к списку открытых окон. Это позволяет работать сразу с несколькими проектами, например – копировать в текущий проект участки кода из других проектов. Один из открытых проектов является главным ( Main Project ) – именно он будет запускаться на исполнение по Run/ Run Main Project. Для того, чтобы установить какой-либо из открытых проектов в качестве главного, следует в дереве проектов с помощью правой кнопки мыши щелкнуть по имени проекта и выбрать пункт меню Set Main Project. Аналогично, для того, чтобы закрыть какой-либо из открытых проектов, следует в дереве проектов с помощью правой кнопки мыши щелкнуть по имени проекта и выбрать пункт меню Close Project.

Рассмотрим теперь структуру папок проекта NetBeans. По умолчанию главная папка проекта располагается в папке пользователя. В операционной системе Windows® XP проект по умолчанию располагается в папке C:\Documents and Settings\ИмяПользователя\. Дальнейшее расположение папок и файлов приведено ниже, при этом имена папок выделены жирным шрифтом, а имена вложенных папок и файлов записаны под именами их головных папок и сдвинуты относительно них вправо.

  • В папке build хранятся скомпилированные файлы классов, имеющие расширение . >

Приведем перевод файла README.TXT, находящегося в папке dist — там же, где архив JAR , предназначенный для распространения как файл приложения:

ОПИСАНИЕ ВЫВОДА КОМПИЛЯЦИИ

Когда Вы компилируете проект приложения Java, которое имеет главный класс, среда разработки ( >classpath ваших проектов, в папку dist/lib. Среда разработки также автоматически прибавляет путь к каждому из этих архивов в файл манифеста приложения ( MANIFEST.MF ).

Чтобы запустить проект в режиме командной строки, зайдите в папку dist и наберите в режиме командной строки следующий текст:

Чтобы распространять этот проект, заархивируйте папку dist (включая папку lib ), и распространяйте ZIP-архив.

  • Если два JAR-архива, указанные в classpath ваших проектов, имеют одинаковое имя, в папку lib будет скопирован только первый из них.
  • Если в classpath указана папка с классами или ресурсами, ни один из элементов classpath не будет скопирован в папку dist.
  • Если в библиотеке, указанной в >classpath , указанные в нем элементы должны быть указаны в пути classpath времени выполнения проектов.
  • Для того чтобы установить главный класс в стандартном проекте Java, щелкните правой кнопкой мыши в окне Projects и выберите Properties. Затем выберите Run и введите данные о названии класса в поле Main >манифеста .

2.8. Создание в NetBeans приложения Java с графическим интерфейсом

Экранной формой называется область, которая видна на экране в виде окна с различными элементами — кнопками, текстом, выпадающими списками и т.п. А сами эти элементы называются компонентами.

Среды, позволяющие в процессе разработки приложения в интерактивном режиме размещать на формы компоненты и задавать их параметры, называются RAD -средами. RAD расшифровывается как Rapid Application Development — быстрая разработка приложений.

В NetBeans и других современных средах разработки такой процесс основан на объектной модели компонентов, поэтому он называется Объектно-Ориентированным Дизайном ( OOD – Object-Oriented Design ).

NetBeans является RAD -средой и позволяет быстро и удобно создавать приложения с развитым графическим пользовательским интерфейсом ( GUI ). Хотя языковые конструкции Java , позволяющие это делать, не очень просты, на начальном этапе работы с экранными формами и их элементами нет необходимости вникать в эти тонкости. Достаточно знать основные принципы работы с такими проектами.

С точки зрения автора, изучение того, как создавать приложения с графическим интерфейсом, весьма важно для начинающих программистов, и это следует делать с самых первых шагов по изучению Java .

Во-первых, с самого начала осваивается создание полноценных приложений, которые можно использовать в полезных целях. Трудно месяцами изучать абстрактные концепции, и только став профессионалом иметь возможность сделать что-то такое, что можно показать окружающим. Гораздо интереснее и полезнее сразу начать применять полученные знания на практике.

Во-вторых, такой интерфейс при решении какой-либо задачи позволяет лучше сформулировать, какие параметры надо вводить, какие действия и в какой последовательности выполнять, и что в конце концов получается. И отобразить все это на экране: вводимым параметрам будут соответствовать пункты ввода текста, действиям – кнопки и пункты меню , результатам – пункты вывода текста.

В NetBeans 5.0 имелся хороший пример GUI -приложения, однако в NetBeans 5.5 он отсутствует. Поэтому для дальнейшей работы следует использовать пример JavaApplicationGUI_example , ссылка на который дана в начале лекции.

Сначала следует распаковать zip- архив , и извлечь находящуюся в нем папку с файлами проекта в папку с вашими проектами (например, C:\Documents and Settings\User ). Затем запустить среду NetBeans, если она не была запущена, и закрыть имеющиеся открытые проекты, чтобы они не мешали. После чего выбрать в меню File/Open Project, либо или на панели инструментов иконку с открывающейся фиолетовой папочкой, либо нажать комбинацию клавиш + +O. В открывшемся диалоге выбрать папку JavaApplicationGUI_example (лучше в нее не заходить, а просто установить выделение на эту папку), после чего нажать кнопку Open Project Folder.

При этом, если не снимать галочку «Open as Main Project», проект автоматически становится главным.

В окне редактора исходного кода появится следующий текст:

Поясним некоторые его части. Указание пакета java_gui_example , в котором будет располагаться код класса приложения , нам уже знакомо. Декларация самого класса GUI_application в данном случае несколько сложнее, чем раньше:

Она означает, что задается общедоступный класс GUI_application , который является наследником класса JFrame , заданного в пакете swing , вложенном в пакет javax . Слово extends переводится как «расширяет» ( класс -наследник всегда расширяет возможности класса-прародителя).

Общедоступный конструктор GUI_application() создает объект приложения и инициализирует все его компоненты, методом initComponents() , автоматически генерируемом средой разработки и скрываемом в исходном коде узлом +Generated Code . Развернув узел, можно увидеть реализацию этого метода, но изменить код нельзя. Мы не будем останавливаться на том, что в нем делается.

Далее следует закрытый ( private ) метод

Он будет обсуждаться чуть позже. Метод

нам уже знаком – это главный метод приложения. Он является методом класса нашего приложения и автоматически выполняется Java -машиной при запуске приложения. В данном примере метод создает экранную форму приложения и делает ее видимой. Для того, чтобы понять, как это делается, потребуется изучить довольно много материала в рамках данного курса.

Далее следует область объявления компонентов– пунктов меню нашей формы. Она автоматически создается в исходном коде редактором экранных форм и недоступна для изменения в редакторе исходного кода.

При запуске приложения экранная форма выглядит так, как показано на рисунке. В ней уже имеется заготовка меню , которое способно разворачиваться и сворачиваться, и даже работает пункт Exit – » Выход «. При нажатии на него происходит выход из приложения.

Именно за нажатие на этот пункт меню несет ответственность оператор exitMenuItemActionPerformed . При проектировании экранной формы он назначен в качестве обработчика события – подпрограммы, которая выполняется при наступлении события. В нашем случае событием является выбор пункта меню Exit, и при этом вызывается обработчик exitMenuItemActionPerformed . Внутри него имеется всего одна строчка

Она вызывает прекращение выполнения метода main и выход из приложения с нулевым кодом завершения . Как правило, ненулевой код завершения возвращают при аварийном завершении приложения для того, чтобы по его значению можно было выяснить причины «вылета» программы.

Создание в NetBeans 5.5 приложения Java с графическим интерфейсом

интерфейс код исходный

Экранной формой называется область, которая видна на экране в виде окна с различными элементами — кнопками, текстом, выпадающими списками и т.п. А сами эти элементы называются компонентами.

Среды, позволяющие в процессе разработки приложения в интерактивном режиме размещать на формы компоненты и задавать их параметры, называются RAD-средами. RAD расшифровывается как Rapid Application Development — быстрая разработка приложений.

В NetBeans и других современных средах разработки такой процесс основан на объектной модели компонентов, поэтому он называется Объектно-Ориентированным Дизайном (OODObject-Oriented Design).

NetBeans является RAD-средой и позволяет быстро и удобно создавать приложения с развитым графическим пользовательским интерфейсом (GUI). Хотя языковые конструкции Java, позволяющие это делать, не очень просты, на начальном этапе работы с экранными формами и их элементами нет необходимости вникать в эти тонкости. Достаточно знать основные принципы работы с такими проектами.

С точки зрения автора изучение того, как создавать приложения с графическим интерфейсом, весьма важно для начинающих программистов, и это следует делать с самых первых шагов по изучению Java.

Во-первых, с самого начала осваивается создание полноценных приложений, которые можно использовать в полезных целях. Трудно месяцами изучать абстрактные концепции, и только став профессионалом иметь возможность сделать что-то такое, что можно показать окружающим. Гораздо интереснее и полезнее сразу начать применять полученные знания на практике.

Во-вторых, такой интерфейс при решении какой-либо задачи позволяет лучше сформулировать, какие параметры надо вводить, какие действия и в какой последовательности выполнять, и что в конце концов получается. И отобразить все это на экране: вводимым параметрам будут соответствовать пункты ввода текста, действиям — кнопки и пункты меню, результатам — пункты вывода текста.

Создание приложения с графическим интерфейсом

Для создания приложения запускаем программу NetBeans. Далее включаем пункты меню File, NewProject. Открывается диалоговое окно (см. рис. 1.1). В этом окне выбираем Categories General и Projects Java Application, затем нажимаем кнопку Next. В появившемся окне: вводим имя проекта GUI_application, нажимаем кнопку Brows и выбираем папку, в которой будем размещать проект, очищаем строку Create Main Class и нажимаем кнопку Finish. Заготовка проекта создана (см. рис.1.2)

В окне Projects нажимаем правую кнопку мыши на именю приложения GUI_application (см. рис.1.3). В появившемся контекстном меню выбираем пункты New, JFrame Form. После этого появляется диалоговое окно, в котором просто нажимаем кнопку Finish. Появляется окно формы (рис.1.4).

Из окна Palette перетаскиваем на созданную форму значок главного меню JMenuBar. Находим значок главного меню jMenuBar1[JMenuBar] на дереве проекта в окне Projects, вызываем контекстное меню этого значка и включаем пункт меню Add JMenu. На форме появляется пункт меню Menu, а на дереве проекта пункт jMenu1[JMenu]. Для переименования созданного пункта меню выделяем на дереве проекта пункт jMenu1[JMenu] и в окне Properties (свойства) находим свойство text и изменяем значение данного свойства на File. Таким образом, мы создали пункт меню File. Для создания других пунктов меню (Edit, Help) поступаем аналогично и получаем (см. рис.1.5).

Теперь необходимо создать подпункты для каждого пункта меню. Рассмотрим это на примере пункта File. На дереве проекта находим значок jMenu1[JMenu], соответствующий пункту меню File. Вызываем контекстное меню этого значка и включаем пункты Add, JMenuItem. После этого на дереве проекта появляется значок jMenuItem1[JMenuItem]. Выделяем на дереве проекта этот значок и в окне Properties изменяем значение свойства text на Open. Аналогично устанавливаем другие подпункты пункта меню File.

Создадим заголовок окна (формы После создания подпунктов меню для всех пунктов меню необходимо создать заголовок формы (окна). ). Для этого выделяем форму и в окне Properties находим свойство формы title (заголовок). Устанавливаем заголовок GUI Application.

Подпункт Exit пункта меню File служит для завершения работы приложения. Вставим в обработчик события «щелчок мыши по пункту Exit» команду завершения работы System.exit(0). Для этого вызовем контекстное меню значка jMenuItem4[JMenuItem], который относится к последнему подпункту (Exit) меню File. В этом меню включаем пункты Events, Action, actionPerformed. После этого в программном коде появляется обработчик указанного события (метод). В тело данного метода мы вставляем команду System.exit(0):

private void jMenuItem4ActionPerformed(java.awt.event.ActionEvent evt) <

Запустим наше приложение для проверки проделанной работы. После запуска приложения на экране появляется окно формы с созданным меню (см. рис.1.6). Для проверки подпунктов меню щелкаем на кнопке File, в результате на экране появляются подпункты меню File.

Для завершения работы приложения щелкаем на подпункте меню Exit и программа завершает свою работу.

Для просмотра исходного кода щелкаем мышкой на кнопке Design и в окне редактора кода появится следующий текст:

* Created on 25 Февраль 2014 г., 3:00

public class NewJFrame extends javax.swing.JFrame <

/** Creates new form NewJFrame */

/** This method is called from within the constructor to

* initialize the form.

* WARNING: Do NOT modify this code. The content of this method is

Записки программиста

Краткий обзор GUI-фреймворков для Java и мое первое простенькое GUI-приложение на Swing

Так исторически сложилось, что с UI мне приходилось работать очень мало. Видимо, поэтому мне так интересные всякие там Qt и wxW >

Ситуация с GUI фреймворками в мире Java несколько запутанная. Насколько я смог разобраться, дела обстоят следующим образом.

  • AWT (Abstract Window Toolkit) был первым GUI фреймворком. Идея была правильная — AWT использует нативные контролы, то есть, они выглядят и физически являются родными, независимо от того, где вы запускаете свое приложение. К сожалению, оказалось, что (1) общих для различных окружений контролов мало и (2) писать кроссплатформенные нативные интерфейсы так, чтобы ничего не поползло и не разъехалось, очень сложно;
  • Поэтому на смену AWT пришел Swing. Swing использует формочки, создаваемые AWT, на которых он своими силами рисует контролы. Работает это хозяйство, понятно дело, медленнее, но зато UI становится намного более портабельным. Swing предлагает на выбор программисту множество Look&Feel, благодаря которым можно сделать либо так, чтобы приложение выглядело и вело себя одинаково как под Windows, так и под Linux, либо чтобы приложение было очень похоже на нативное независимо от того, где его запускают. В первом случае приложение проще отлаживать, во втором — становятся счастливее пользователи. Кстати, изначально Swing был сделан парнями из Netscape;
  • SWT (Standard W >всех-всех-всех платформ, и тогда приложение вроде как даже станет портабельным, но только до тех пор, пока не появится какая-нибудь новая операционная система или архитектура процессора;
  • JavaFX активно пилится в Oracle и позиционируется, как скорая замена Swing. Идеологически JavaFX похож на Swing, то есть, контролы не нативные. Среди интересных особенностей JavaFX следует отметить хардверное ускорение, создание GUI при помощи CSS и XML (FXML), возможность использовать контролы JavaFX’а в Swing’е, а также кучу новых красивых контролов, в том числе для рисования диаграмм и 3D. Видео с более детальным обзором JavaFX можно посмотреть здесь. Начиная с Java 7, JavaFX является частью JRE/JDK;
  • NetBeans Platform (не путать с NetBeans IDE!) — это такая штука, которая, как я понял, работает поверх Swing и JavaFX, предоставляет как бы более удобный интерфейс для работы с ними, а также всякие дополнительные контролы. В одном приложении, использующем NetBeans Platform, я видел возможность перетаскивать вкладки drug&drop’ом, располагая панели в окне подобно тому, как это делают тайловые оконные менеджеры. По всей видимости, сам Swing так не умеет. Почитать про NetBeans Platform поподробнее можно здесь;

Не исключено, что есть и другие фреймворки. Наиболее каноничным на сегодняшний день является Swing, поэтому им и займемся.

Выше что-то говорилось про какие-то там Look&Feel. Чтобы лучше понять, о чем идет речь, давайте напишем программу, которая выводит список этих самых Look&Feel и позволит переключаться между ними прямо в процессе работы программы.

Наше приложение будет выглядеть следующим образом под Ubuntu:

А так оно будет выглядеть при запуске под Windows:

Как видите, JRE под Windows и Linux включают в себя разный набор L&F. Кроме того, вы можете подключить сторонний Look&Feel или даже написать свой. По умолчанию используется L&F Metal, который во всех ОС и оконных менеджерах выглядит более-менее одинаково. Если вам больше нравятся круглые кнопочки, то вместо Metal можно использовать Look&Feel Nimbus. Если вам хочется, чтобы приложение было похоже на нативное, то под Linux следует выбрать L&F GTK+ (интересно, а если пользователь сидит под KDE?), а под Windows — L&F Windows. Неплохой идеей, видимо, будет предусмотреть в вашей программе возможность переключаться между различными L&F. С другой стороны, при этом придется тестировать работу приложения со всеми этими L&F.

Давайте посмотрим на исходный код приложения. Коллеги UI-щики заверили меня, что никаких WYSIWYG редакторов они не используют, а если используют, то разве что для быстрого прототипирования. Из неплохих WYSIWYG редакторов назывался JFormDesigner. Говорят, генерируемый им код даже похож на код, написанный человеком, а не адовую().последовательность().вызовов().методов(). В общем, весь код писался лапками в IntelliJ IDEA.

В Swing и AWT, если мы хотим что-то поменять в UI, мы должны делать это из event dispatching thread. Статический метод invokeLater принимает класс, реализующий интерфейс Runnable, и вызывает его метод run() внутри event dispatching thread. Если вам не знаком приведенный выше синтаксис, то это такой способ в Java объявить класс, не присваивая ему имени. Классы без имени называются анонимными. Часто анонимные классы в Java выполняют ту же роль, что играют лямда-фукнции в функциональных языках программирования. Помимо прочего, поддерживаются и замыкания. Интересно, что, в отличие от лямбд, анонимные классы в Java позволяют передать сразу пачку методов. Притом, при помощи наследования и абстрактных классов, для всех или части методов можно взять их реализацию по умолчанию.

Аннотация @Override проверяет, что метод run() действительно переопределит метод интерфейса Runnable. Без нее при переопределении метода мы можем случайно сделать опечатку и определить новый метод вместо того, чтобы переопределить существующий. Впрочем, в данном конкретном случае аннотация, видимо, не очень полезна, и, наверное, даже является лишней.

В итоге event dispatching thread вызовет метод createGUI(), полный код которого следующий:

private static void createGUI ( ) <
JList String > list = new JList <> ( ) ;
list. setSelectionMode ( ListSelectionModel . SINGLE_SELECTION ) ;

JScrollPane listScrollPane = new JScrollPane ( list ) ;

JPanel topPanel = new JPanel ( ) ;
topPanel. setLayout ( new BorderLayout ( ) ) ;
topPanel. add ( listScrollPane, BorderLayout . CENTER ) ;

ActionListener updateButtonListener = new UpdateListAction ( list ) ;
updateButtonListener. actionPerformed (
new ActionEvent ( list, ActionEvent . ACTION_PERFORMED , null )
) ;

JButton updateListButton = new JButton ( «Update list» ) ;
JButton updateLookAndFeelButton = new JButton ( «Update Look&Feel» ) ;

JPanel btnPannel = new JPanel ( ) ;
btnPannel. setLayout ( new BoxLayout ( btnPannel, BoxLayout . LINE_AXIS ) ) ;
btnPannel. add ( updateListButton ) ;
btnPannel. add ( Box . createHorizontalStrut ( 5 ) ) ;
btnPannel. add ( updateLookAndFeelButton ) ;

JPanel bottomPanel = new JPanel ( ) ;
bottomPanel. add ( btnPannel ) ;

JPanel panel = new JPanel ( ) ;
panel. setBorder ( BorderFactory . createEmptyBorder ( 5 , 5 , 5 , 5 ) ) ;
panel. setLayout ( new BorderLayout ( ) ) ;
panel. add ( topPanel, BorderLayout . CENTER ) ;
panel. add ( bottomPanel, BorderLayout . SOUTH ) ;

JFrame frame = new JFrame ( «Look&Feel Switcher» ) ;
frame. setMinimumSize ( new Dimension ( 300 , 200 ) ) ;
frame. setDefaultCloseOperation ( WindowConstants . EXIT_ON_CLOSE ) ;
frame. add ( panel ) ;
frame. pack ( ) ;
frame. setVisible ( true ) ;

updateListButton. addActionListener ( updateButtonListener ) ;
updateLookAndFeelButton. addActionListener (
new UpdateLookAndFeelAction ( frame, list )
) ;
>

Тут, в общем-то, нет ничего супер сложного. Создаются кнопки, список, список заворачивается в JScrollPane, чтобы у списка была прокрутка. Элементы управления располагаются во фрейме при помощи панелей. Панели могут иметь различные лайоуты, здесь мы использовали BorderLayout и BoxLayout. Принцип аналогичен тому, что используется в wxWidgets.

Для реакции на различные события, например, нажатия кнопок, используются классы, реализующие интерфейс ActionListener. В приведенном выше коде используется два таких класса — UpdateListAction и UpdateLookAndFeelAction. Как нетрудно догадаться по названию, первый класс отвечает за обработку нажатий на левую кнопку «Update list», второй — на правую кнопку «Update Look&Feel». ActionListener’ы привязываются к кнопкам при помощи метода addActionListener. Поскольку сразу после запуска приложения нам хочется увидеть список доступных Look&Feel, мы эмулируем нажатие на кнопку «Update list». Для этого мы создаем экземпляр класса ActionEvent и передаем его в качестве аргумента методу actionPerformed класса UpdateListAction.

Реализация класса UpdateListAction следующая:

static class UpdateListAction implements ActionListener <
private JList String > list ;

public UpdateListAction ( JList String > list ) <
this . list = list ;
>

@Override
public void actionPerformed ( ActionEvent event ) <
ArrayList String > lookAndFeelList = new ArrayList <> ( ) ;
UIManager. LookAndFeelInfo [ ] infoArray =
UIManager . getInstalledLookAndFeels ( ) ;
int lookAndFeelIndex = 0 ;
int currentLookAndFeelIndex = 0 ;
String currentLookAndFeel >=
UIManager . getLookAndFeel ( ) . getClass ( ) . getName ( ) ;

for ( UIManager. LookAndFeelInfo info : infoArray ) <
if ( info. getClassName ( ) . equals ( currentLookAndFeel >) ) <
currentLookAndFeelIndex = lookAndFeelIndex ;
>
lookAndFeelList. add ( info. getName ( ) ) ;
lookAndFeelIndex ++;
>

String [ ] listDataArray = new String [ lookAndFeelList. size ( ) ] ;
final String [ ] newListData =
lookAndFeelList. toArray ( listDataArray ) ;
final int newSelectedIndex = currentLookAndFeelIndex ;

SwingUtilities . invokeLater ( new Runnable ( ) <
@Override
public void run ( ) <
list. setListData ( newListData ) ;
list. setSelectedIndex ( newSelectedIndex ) ;
>
> ) ;
>
>

В конструкторе передается указатель на список, в котором мы будет отображать доступные Look&Feel. На самом деле, поскольку UpdateListAction является вложенным классом нашего основного класса LookAndFeelSwitcher, у него есть возможность обращаться напрямую к полям создавшего его экземпляра LookAndFeelSwitcher. Но функциональщик внутри меня сопротивляется такому подходу, поэтому я решил передать ссылку на список явно через конструктор.

Метод actionPerformed будет вызываться при нажатии на кнопку. Код этого метода довольно тривиален — мы просто используем статические методы класса UIManager для получения списка доступных Look&Feel, а также определения текущего Look&Feel. Затем обновляется содержимое списка и выбранный в нем элемент. Тут нужно обратить внимание на два момента. Во-первых, каждый Look&Feel имеет имя и имя класса, это разные вещи. Пользователю мы должны показывать имена, а при переключении Look&Feel использовать имя класса. Во-вторых, обратите внимание на то, как создаются final переменные newListData и newSelectedIndex, которые затем используются в анонимном классе. Это и есть тот самый аналог замыканий, речь о котором шла ранее. Очевидно, использование не final переменных в замыканиях привело бы к печальным последствиям.

Наконец, рассмотрим класс UpdateLookAndFeelAction:

static class UpdateLookAndFeelAction implements ActionListener <
private JList String > list ;
private JFrame rootFrame ;

public UpdateLookAndFeelAction ( JFrame frame, JList String > list ) <
this . rootFrame = frame ;
this . list = list ;
>

@Override
public void actionPerformed ( ActionEvent e ) <
String lookAndFeelName = list. getSelectedValue ( ) ;
UIManager. LookAndFeelInfo [ ] infoArray =
UIManager . getInstalledLookAndFeels ( ) ;

for ( UIManager. LookAndFeelInfo info : infoArray ) <
if ( info. getName ( ) . equals ( lookAndFeelName ) ) <
String message = «Look&feel was changed to » + lookAndFeelName ;
try <
UIManager . setLookAndFeel ( info. getClassName ( ) ) ;
SwingUtilities . updateComponentTreeUI ( rootFrame ) ;
> catch ( ClassNotFoundException e1 ) <
message = «Error: » + info. getClassName ( ) + » not found» ;
> catch ( InstantiationException e1 ) <
message = «Error: instantiation exception» ;
> catch ( IllegalAccessException e1 ) <
message = «Error: illegal access» ;
> catch ( UnsupportedLookAndFeelException e1 ) <
message = «Error: unsupported look and feel» ;
>
JOptionPane . showMessageDialog ( null , message ) ;
break ;
>
>
>
>

Здесь мы просто (1) находим L&F с именем, равным имени, выбранному в списке, (2) меняем L&F при помощи static метода setLookAndFeel класса UIManager и (3) перерисовываем главный фрейм нашего UI, а также, рекурсивно, расположенные на нем элементы, при помощи static метода updateComponentTreeUI класса SwingUtilities. Наконец, мы уведомляем пользователя при помощи сообщения, все ли прошло успешно.

Также хотелось бы сказать пару слов об отладке GUI-приложений на Java, и не только GUI. Во-первых, в Swing есть такое волшебное сочетание клавиш Ctr + Shift + F1, которое выводит в stdout информацию о том, как расположены контролы. Очень полезно, если хочется слизать UI у конкурентов. Во-вторых, есть такой интересный хоткей Ctr + \. Если нажать его в консоли работающего приложения на Java, будут выведены все нитки и их стектрейсы. Удобно, если вы словили дэдлок. Наконец, в-третьих, во время разработки GUI бывает полезно разукрасить панели в разные цвета. Сделать это можно так:

Код к этой заметке вы найдете здесь. Присмотритесь к нему повнимательнее. Как по мне, код получился не таким уж и многословным или там в стиле «фабрика фабрик для создания фабрик», как любят наговаривать на Java некоторые товарищи. В принципе, все довольно просто и понятно, и выкинуть из кода особо нечего. Вы как считаете?

Создание gui windows приложений на java. Создание в NetBeans приложения Java с графическим интерфейсом

Так исторически сложилось, что с UI мне приходилось работать очень мало. Видимо, поэтому мне так интересные всякие там Qt и wxWidgets — все кажется новым, интересным, необычным. Впрочем, коль скоро я взялся за изучение Java , речь сегодня пойдет не о Qt и не о wxWidgets, а о Swing. Сегодня совместными усилиями мы напишем простенькое GUI-приложение на Java, с кнопочками, списками и даже умеющее менять шкурки!

Ситуация с GUI фреймворками в мире Java несколько запутанная. Насколько я смог разобраться, дела обстоят следующим образом.

  • AWT (Abstract Window Toolkit) был первым GUI фреймворком. Идея была правильная — AWT использует нативные контролы, то есть, они выглядят и физически являются родными, независимо от того, где вы запускаете свое приложение. К сожалению, оказалось, что (1) общих для различных окружений контролов мало и (2) писать кроссплатформенные нативные интерфейсы так, чтобы ничего не поползло и не разъехалось, очень сложно;
  • Поэтому на смену AWT пришел Swing . Swing использует формочки, создаваемые AWT, на которых он своими силами рисует контролы. Работает это хозяйство, понятно дело, медленнее, но зато UI становится намного более портабельным. Swing предлагает на выбор программисту множество Look&Feel, благодаря которым можно сделать либо так, чтобы приложение выглядело и вело себя одинаково как под Windows, так и под Linux, либо чтобы приложение было очень похоже на нативное независимо от того, где его запускают. В первом случае приложение проще отлаживать, во втором — становятся счастливее пользователи. Кстати, изначально Swing был сделан парнями из Netscape;
  • SWT (Standard Widget Toolkit) — фреймворк, написанный в IBM и используемый в Eclipse. Как и в AWT, используются нативные контролы. SWT не входит в JDK и использует JNI, поэтому не очень соответствует идеологии Java «написано однажды, работает везде». Вроде как при очень сильном желании можно запаковать в пакет реализацию SWT для всех-всех-всех платформ, и тогда приложение вроде как даже станет портабельным, но только до тех пор, пока не появится какая-нибудь новая операционная система или архитектура процессора;
  • JavaFX активно пилится в Oracle и позиционируется, как скорая замена Swing. Идеологически JavaFX похож на Swing, то есть, контролы не нативные. Среди интересных особенностей JavaFX следует отметить хардверное ускорение, создание GUI при помощи CSS и XML (FXML), возможность использовать контролы JavaFX’а в Swing’е, а также кучу новых красивых контролов, в том числе для рисования диаграмм и 3D. Видео с более детальным обзором JavaFX можно . Начиная с Java 7, JavaFX является частью JRE/JDK ;
  • NetBeans Platform (не путать с NetBeans IDE!) — это такая штука, которая, как я понял, работает поверх Swing и JavaFX, предоставляет как бы более удобный интерфейс для работы с ними, а также всякие дополнительные контролы. В одном приложении, использующем NetBeans Platform, я видел возможность перетаскивать вкладки drug&drop’ом, располагая панели в окне подобно тому, как это делают тайловые оконные менеджеры . По всей видимости, сам Swing так не умеет. Почитать про NetBeans Platform поподробнее ;

Не исключено, что есть и другие фреймворки. Наиболее каноничным на сегодняшний день является Swing, поэтому им и займемся.

Выше что-то говорилось про какие-то там Look&Feel. Чтобы лучше понять, о чем идет речь, давайте напишем программу, которая выводит список этих самых Look&Feel и позволит переключаться между ними прямо в процессе работы программы.

Наше приложение будет выглядеть следующим образом под Ubuntu:

А так оно будет выглядеть при запуске под Windows:

Как видите, JRE под Windows и Linux включают в себя разный набор L&F. Кроме того, вы можете подключить сторонний Look&Feel или даже написать свой. По умолчанию используется L&F Metal, который во всех ОС и оконных менеджерах выглядит более-менее одинаково. Если вам больше нравятся круглые кнопочки, то вместо Metal можно использовать Look&Feel Nimbus. Если вам хочется, чтобы приложение было похоже на нативное, то под Linux следует выбрать L&F GTK+ (интересно, а если пользователь сидит под KDE?), а под Windows — L&F Windows. Неплохой идеей, видимо, будет предусмотреть в вашей программе возможность переключаться между различными L&F. С другой стороны, при этом придется тестировать работу приложения со всеми этими L&F.

Давайте посмотрим на исходный код приложения. Коллеги UI-щики заверили меня, что никаких WYSIWYG редакторов они не используют, а если используют, то разве что для быстрого прототипирования. Из неплохих WYSIWYG редакторов назывался JFormDesigner . Говорят, генерируемый им код даже похож на код, написанный человеком, а не адовую().последовательность().вызовов().методов(). В общем, весь код писался лапками в IntelliJ IDEA .

public static void main(String args) <

В Swing и AWT, если мы хотим что-то поменять в UI, мы должны делать это из event dispatching thread. Статический метод invokeLater принимает класс, реализующий интерфейс Runnable, и вызывает его метод run() внутри event dispatching thread. Если вам не знаком приведенный выше синтаксис, то это такой способ в Java объявить класс, не присваивая ему имени. Классы без имени называются анонимными. Часто анонимные классы в Java выполняют ту же роль, что играют лямда-фукнции в функциональных языках программирования. Помимо прочего, поддерживаются и замыкания. Интересно, что, в отличие от лямбд, анонимные классы в Java позволяют передать сразу пачку методов. Притом, при помощи наследования и абстрактных классов, для всех или части методов можно взять их реализацию по умолчанию.

Аннотация @Override проверяет, что метод run() действительно переопределит метод интерфейса Runnable. Без нее при переопределении метода мы можем случайно сделать опечатку и определить новый метод вместо того, чтобы переопределить существующий. Впрочем, в данном конкретном случае аннотация, видимо, не очень полезна, и, наверное, даже является лишней.

В итоге event dispatching thread вызовет метод createGUI(), полный код которого следующий:

private static void createGUI() <
JList list = new JList<> () ;
list.setSelectionMode (ListSelectionModel .SINGLE_SELECTION ) ;

JScrollPane listScrollPane = new JScrollPane (list) ;

JPanel topPanel = new JPanel () ;
topPanel.setLayout (new BorderLayout () ) ;
topPanel.add (listScrollPane, BorderLayout .CENTER ) ;

ActionListener updateButtonListener = new UpdateListAction(list) ;
updateButtonListener.actionPerformed (
new ActionEvent (list, ActionEvent .ACTION_PERFORMED , null )
) ;

JButton updateListButton = new JButton («Update list» ) ;
JButton updateLookAndFeelButton = new JButton («Update Look&Feel» ) ;

JPanel btnPannel = new JPanel () ;
btnPannel.setLayout (new BoxLayout (btnPannel, BoxLayout .LINE_AXIS ) ) ;
btnPannel.add (updateListButton) ;
btnPannel.add (Box .createHorizontalStrut (5 ) ) ;
btnPannel.add (updateLookAndFeelButton) ;

JPanel bottomPanel = new JPanel () ;
bottomPanel.add (btnPannel) ;

JPanel panel = new JPanel () ;
panel.setBorder (BorderFactory .createEmptyBorder (5 ,5 ,5 ,5 ) ) ;
panel.setLayout (new BorderLayout () ) ;
panel.add (topPanel, BorderLayout .CENTER ) ;
panel.add (bottomPanel, BorderLayout .SOUTH ) ;

JFrame frame = new JFrame («Look&Feel Switcher» ) ;
frame.setMinimumSize (new Dimension (300 , 200 ) ) ;
frame.setDefaultCloseOperation (WindowConstants .EXIT_ON_CLOSE ) ;
frame.add (panel) ;
frame.pack () ;
frame.setVisible (true ) ;

UpdateListButton.addActionListener (updateButtonListener) ;
updateLookAndFeelButton.addActionListener (
new UpdateLookAndFeelAction(frame, list)
) ;
>

Тут, в общем-то, нет ничего супер сложного. Создаются кнопки, список, список заворачивается в JScrollPane, чтобы у списка была прокрутка. Элементы управления располагаются во фрейме при помощи панелей. Панели могут иметь различные лайоуты, здесь мы использовали BorderLayout и BoxLayout . Принцип аналогичен тому, что используется в wxWidgets .

Для реакции на различные события, например, нажатия кнопок, используются классы, реализующие интерфейс ActionListener. В приведенном выше коде используется два таких класса — UpdateListAction и UpdateLookAndFeelAction. Как нетрудно догадаться по названию, первый класс отвечает за обработку нажатий на левую кнопку «Update list», второй — на правую кнопку «Update Look&Feel». ActionListener’ы привязываются к кнопкам при помощи метода addActionListener. Поскольку сразу после запуска приложения нам хочется увидеть список доступных Look&Feel, мы эмулируем нажатие на кнопку «Update list». Для этого мы создаем экземпляр класса ActionEvent и передаем его в качестве аргумента методу actionPerformed класса UpdateListAction.

Реализация класса UpdateListAction следующая:

static class UpdateListAction implements ActionListener <
private JList list;

public UpdateListAction(JList list) <
this .list = list;
>

@Override
public void actionPerformed(ActionEvent event) <
ArrayList lookAndFeelList = new ArrayList<> () ;
UIManager.LookAndFeelInfo infoArray =

int lookAndFeelIndex = 0 ;
int currentLookAndFeelIndex = 0 ;
String currentLookAndFeel >UIManager .getLookAndFeel () .getClass () .getName () ;

for ( UIManager.LookAndFeelInfo info : infoArray) <
if (info.getClassName () .equals (currentLookAndFeelClassName) ) <
currentLookAndFeelIndex = lookAndFeelIndex;
>
lookAndFeelList.add (info.getName () ) ;
lookAndFeelIndex++;
>

String listDataArray = new String [ lookAndFeelList.size () ] ;
final String newListData =
lookAndFeelList.toArray (listDataArray) ;
final int newSelectedIndex = currentLookAndFeelIndex;

SwingUtilities .invokeLater (new Runnable () <
@Override
public void run() <
list.setListData (newListData) ;
list.setSelectedIndex (newSelectedIndex) ;
>
> ) ;
>
>

В конструкторе передается указатель на список, в котором мы будет отображать доступные Look&Feel. На самом деле, поскольку UpdateListAction является вложенным классом нашего основного класса LookAndFeelSwitcher, у него есть возможность обращаться напрямую к полям создавшего его экземпляра LookAndFeelSwitcher. Но функциональщик внутри меня сопротивляется такому подходу, поэтому я решил передать ссылку на список явно через конструктор.

Метод actionPerformed будет вызываться при нажатии на кнопку. Код этого метода довольно тривиален — мы просто используем статические методы класса UIManager для получения списка доступных Look&Feel, а также определения текущего Look&Feel. Затем обновляется содержимое списка и выбранный в нем элемент. Тут нужно обратить внимание на два момента. Во-первых, каждый Look&Feel имеет имя и имя класса , это разные вещи. Пользователю мы должны показывать имена, а при переключении Look&Feel использовать имя класса. Во-вторых, обратите внимание на то, как создаются final переменные newListData и newSelectedIndex, которые затем используются в анонимном классе. Это и есть тот самый аналог замыканий, речь о котором шла ранее. Очевидно, использование не final переменных в замыканиях привело бы к печальным последствиям.

Наконец, рассмотрим класс UpdateLookAndFeelAction:

static class UpdateLookAndFeelAction implements ActionListener <
private JList list;
private JFrame rootFrame;

public UpdateLookAndFeelAction(JFrame frame, JList list) <
this .rootFrame = frame;
this .list = list;
>

@Override
public void actionPerformed(ActionEvent e) <
String lookAndFeelName = list.getSelectedValue () ;
UIManager.LookAndFeelInfo infoArray =
UIManager .getInstalledLookAndFeels () ;

for ( UIManager.LookAndFeelInfo info : infoArray) <
if (info.getName () .equals (lookAndFeelName) ) <
String message = «Look&feel was changed to » + lookAndFeelName;
try <
UIManager .setLookAndFeel (info.getClassName () ) ;
SwingUtilities .updateComponentTreeUI (rootFrame) ;
> catch (ClassNotFoundException e1) <
message = «Error: » + info.getClassName () + » not found» ;
> catch (InstantiationException e1) <
message = «Error: instantiation exception» ;
> catch (IllegalAccessException e1) <
message = «Error: illegal access» ;
> catch ( UnsupportedLookAndFeelException e1) <
message = «Error: unsupported look and feel» ;
>
JOptionPane .showMessageDialog (null , message) ;
break ;
>
>
>
>

Здесь мы просто (1) находим L&F с именем, равным имени, выбранному в списке, (2) меняем L&F при помощи static метода setLookAndFeel класса UIManager и (3) перерисовываем главный фрейм нашего UI, а также, рекурсивно, расположенные на нем элементы, при помощи static метода updateComponentTreeUI класса SwingUtilities. Наконец, мы уведомляем пользователя при помощи сообщения, все ли прошло успешно.

Также хотелось бы сказать пару слов об отладке GUI-приложений на Java, и не только GUI. Во-первых, в Swing есть такое волшебное сочетание клавиш Ctr + Shift + F1, которое выводит в stdout информацию о том, как расположены контролы. Очень полезно, если хочется слизать UI у конкурентов. Во-вторых, есть такой интересный хоткей Ctr + \. Если нажать его в консоли работающего приложения на Java, будут выведены все нитки и их стектрейсы. Удобно, если вы словили дэдлок. Наконец, в-третьих, во время разработки GUI бывает полезно разукрасить панели в разные цвета. Сделать это можно так:

buttonsPanel.setBackground (Color .BLUE ) ;

Предоставлено Салимом Гулом (Saleem Gul) и Томасом Павеком (Tomas Pavek)

В данном учебном курсе рассматривается создание простого графического интерфейса пользователя и добавление к нему несложной серверной функциональности. В частности, будет рассмотрен код, определяющий поведение кнопок и полей в форме Swing.

Мы разберем компоновку и структуру графического интерфейса, после чего добавим несколько кнопок и текстовых полей. Текстовые поля предназначены для получения вводимой пользователем информации и вывода результата работы программы. Кнопка будет инициировать работу функций, встроенных в клиентскую часть программы. Создаваемое приложение представляет собой простой, но полнофункциональный калькулятор.

Более детальное руководство по функциям разработки конструктора графического интерфейса пользователя, включая видеодемонстрации различных функций разработки см. в разделе .

Предполагаемая продолжительность: 20 минут

Упражнение 1: Создание проекта

Первым действием является создание проекта среды IDE для разрабатываемого приложения. Дадим проекту имя NumberAddition .

  1. Выберите «Файл» > «Создать проект» . Также можно щелкнуть значок «New Project» на панели инструментов среды IDE.
  2. В области «Categories» выберите узел «Java». В области «Projects» выберите «Java Application». Нажмите кнопку «Далее».
  3. Введите NumberAddition в поле Project Name («Имя проекта») и укажите путь, например, в вашем основном каталоге, как местоположение проекта.
  4. Установите флажок «Использовать отдельную папку для хранения библиотек» и укажите местоположение папки библиотек (необязательно). Дополнительная информация приведена в статье Предоставление доступа к библиотеке другим пользователям в документе Разработка приложений с помощью NetBeans IDE .
  5. Удалите флажок «Create Main Class», если он установлен.
  6. Нажмите кнопку «Готово».

Упражнение 2: Создание внешнего интерфейса

Для продолжения процесса создания интерфейса необходимо создать контейнер Java, в который будут помещены другие требуемые элементы графического интерфейса. В этом действии контейнер будет создан с помощью элемента JFrame . Контейнер будет помещен в новый пакет, который будет отображаться в узле «Source Packages».

Создание контейнера JFrame

  1. В окне «Проекты» щелкните правой кнопкой мыши узел NumberAddition и выберите Создать > Другие.
  2. В диалоговом окне создания файла выберите категорию Swing GUI Forms и тип файла JFrame Form . Нажмите кнопку «Далее».

  3. Введите NumberAdditionUI в качестве имени класса.
  4. Выберите пакет my.numberaddition .
  5. Нажмите кнопку «Готово».

Среда IDE создает форму NumberAdditionUI и класс NumberAdditionUI в приложении NumberAddition и открывает форму NumberAdditionUI в GUI Builder. Пакет my.NumberAddition заменяет собой пакет по умолчанию.

Добавление элементов: создание внешнего интерфейса

Далее с помощью окна «Palette» внешний интерфейс приложения заполняется панелью JPanel. После этого добавляются три элемента JLabel (текстовые подписи), три элемента JTextField (текстовые поля) и три элемента JButton (кнопки). Если до этого работа с конструктором графического интерфейса пользователя не выполнялась сведения о размещения компонентов см. в разделе Разработка графического пользовательского интерфейса Swing в IDE NetBeans .

После перетаскивания и размещения указанных выше элементов элемент JFrame должен выглядеть так, как показано на рисунке ниже.

Если в правом верхнем углу среды IDE отсутствует окно Palette («Палитра»), выберите Window («Окно») > Palette («Палитра»).

  1. Для начала выберите панель из категории Swing Containers («Контейнеры Swing») в палитре и перетащите ее на JFrame.
  2. Панель JPanel будет выделена. Перейдите к окну «Properties» и нажмите кнопку с многоточием (. ) рядом с полем «Border» для выбора стиля границы.
  3. В диалоговом окне «Border» выберите «TitledBorder» из списка и введите Number Addition в поле «Title». Для сохранения изменений и закрытия диалогового окна нажмите кнопку «OK».
  4. Теперь на экране должен отображаться пустой элемент «JFrame» с заголовком «Number Addition», как показано на рисунке. Согласно рисунку добавьте к нему три метки JLabel, три текстовых поля JTextField и три кнопки JButton.

Переименование элементов

На этом этапе будет выполнено переименование элементов, которые были добавлены к элементу JFrame.

  1. Дважды щелкните jLabel1 и измените ntrcn (свойство «text») на First Number .
  2. Дважды щелкните jLabel2 и измените текст на Second Number .
  3. Дважды щелкните jLabel3 и измените текст на Result .
  4. Удалите стандартный текст из jTextField1 . Отображаемый текст можно преобразовать в редактируемый. Для этого щелкните правой кнопкой мыши текстовое поле и выберите «Редактировать текст» во всплывающем меню. При этом может потребоваться восстановить первоначальный размер поля jTextField1 . Повторите это действие для полей jTextField2 и jTextField3 .
  5. Измените отображаемый текст jButton1 на Clear . (Для изменения текста кнопки щелкните кнопку правой кнопкой мыши и выберите «Edit Text». В качестве альтернативы можно щелкнуть кнопку, выдержать паузу и щелкнуть еще раз.)
  6. Измените отображаемый текст jButton2 на Add .
  7. Измените отображаемый текст jButton3 на Exit .

Теперь готовый графический интерфейс должен выглядеть так, как показано на рисунке ниже:

Упражнение 3: Добавление функциональности

В этом упражнении будет добавлена необходимая функциональность к кнопкам «Add», «Clear» и «Exit». Поля jTextField1 и jTextField2 будут использоваться для ввода значений пользователем, а jTextField3 — для вывода результата работы программы. Создаваемая программа представляет собой простейший калькулятор. Итак, приступим!

Добавление функциональности к кнопке «Exit»

Для того чтобы кнопки стали функциональными, каждой из них необходимо присвоить обработчик событий, который будет отвечать за реагирование на события. В нашем случае требуется идентифицировать событие нажатия кнопки — путем щелчка мышью или с помощью клавиатуры. Поэтому будет использоваться интерфейс «ActionListener», предназначенный для обработки событий «ActionEvent».

  1. Щелкните правой кнопкой мыши кнопку «Exit». Во всплывающем меню выберите Events («События») > Action («Действие») > actionPerformed. Учтите, что меню содержит множество других событий, на которые может реагировать программа! При выборе события actionPerformed среда IDE автоматически добавит прослушиватель ActionListener к кнопке Exit («Выход») и создаст метод обработчика для обработки метода прослушивателя actionPerformed.
  2. В среде IDE автоматически открывается окно «Source Code», где отображается место вставки действия, которое должно выполняться кнопкой при ее нажатии (с помощью мыши или клавиатуры). Окно «Source Code» должно содержать следующие строки: private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) < //TODO add your handling code here: >
  3. Теперь добавим код действия, которое должна выполнять кнопка «Exit». Замените строку TODO на System.exit(0); . Готовый код кнопки «Exit» должен выглядеть следующим образом: private void jButton3ActionPerformed(java.awt.event.ActionEvent evt)

Добавление функциональности к кнопке «Clear»

  1. Щелкните правой кнопкой мыши кнопку «Clear» (jButton1). В появившемся меню выберите «Events > Action > actionPerformed».
  2. Нажатие кнопки «Clear» должно приводить к удалению всего текста из всех текстовых полей «jTextField». Для этого следует добавить код, аналогичный приведенному выше. Готовый исходный код должен выглядеть следующим образом: private void jButton1ActionPerformed(java.awt.event.ActionEvent evt)

Этот код удаляет текст из всех трех полей JTextField, оставляя их пустыми.

Добавление функциональности к кнопке «Add»

Кнопка «Add» должна выполнять три действия.

  1. Сначала она принимает данные, введенные пользователем в полях jTextField1 и jTextField2 , и преобразовывает их из типа «String» в тип «Float».
  2. Затем она выполнит сложение двух чисел.
  3. И, наконец, она преобразует сумму в тип String и поместит ее в jTextField3 .

Начнем!

  1. Щелкните вкладку «Design» в верхней части рабочей области для возврата к экрану «Form Design».
  2. Щелкните правой кнопкой мыши кнопку «Add» (jButton2). Во всплывающем меню выберите Events («События») > Action («Действие») > actionPerformed.
  3. Добавьте код действий, которые должна выполнять кнопка «Add». Готовый исходный код должен выглядеть следующим образом: private vo >Теперь программа полностью готова, и можно приступить к ее сборке и выполнению.

    Упражнение 4: Выполнение программы

    Для выполнения программы в среде IDE выполните следующие действия:

      Выберите Run («Запуск») > Run Main Project («Запуск главного проекта») (как вариант, нажмите F6).

    Примечание. При открытии окна с указанием того, что для Project NumberAddition не задан основной класс, следует выбрать my.NumberAddition.NumberAdditionUI в качестве основного класса в том же окне и нажать кнопку ОК.

    Для запуска программы вне среды IDE выполните следующие действия:

    Через несколько секунд приложение запустится.

    Примечание. Если при двойном щелчке файла JAR не выполняется запуск приложения, дополнительные сведения о настройке связей файлов JAR в используемой операционной системе см .

    Можно также запустить приложение из командной строки.

    Для запуска приложения из командной строки выполните следующие действия:

    1. Вызовите командную строку или окно терминала.
    2. В командной строке измените текущий каталог на каталог NumberAddition/dist .
    3. В командной строке введите следующий оператор: java -jar NumberAddition.jar

    Примечание. Убедитесь, что my.NumberAddition.NumberAdditionUI задан как основной класс до запуска приложения. Для провери этого, щелкните правой кнопкой узел мыши узел проекта NumberAddition на панели «Проекты», выберите «Свойства» во всплывающем меню и выберите категорию «Выполнить» в диалоговом окне «Свойства проекта». В поле «Основной класс» должно отображаться my.numberaddition.NumberAdditionUI .

    Механизм обработки событий

    В этом руководстве было рассмотрено реагирование на простое событие нажатия кнопки. Существует множество событий, на которые может реагировать приложение. Просмотреть в среде IDE список доступных событий, которые могут обрабатываться элементами графического интерфейса, можно следующим образом:

    1. Вернитесь к файлу NumberAdditionUI.java в редакторе. Щелкните вкладку «Design» для просмотра структуры графического интерфейса в GUI Builder.
    2. Щелкните правой кнопкой мыши любой элемент графического интерфейса и выберите «Events» в появившемся меню. Теперь можно просто изучить содержимое меню, не выбирая каких-либо пунктов.
    3. В качестве альтернативы можно выбрать «Properties» в меню «Window». В окне «Properties» щелкните вкладку «Events». Вкладка «Events» позволяет просмотреть и изменить обработчики событий, связанные с текущим активным элементом графического интерфейса.
    4. Приложение также может реагировать на нажатие клавиш, одинарный, двойной или тройной щелчок мышью, перемещение указателя мыши, изменение размера окна и перемещение фокуса ввода. Меню «Events» позволяет автоматически создать обработчики событий для всех этих событий. Наиболее распространенным из них является событие «Action». (Для получения дополнительных сведений см. практические рекомендации по обработке событий в руководстве Sun Java Events Tutorial .)

    Как выполняется обработка событий? При каждом выборе события из меню событий среда IDE автоматически создает так называемый прослушиватель событий и связывает его с компонентом разработчика. Для более подробного ознакомления с процессом обработки событий выполните следующие действия.

    1. Вернитесь к файлу NumberAdditionUI.java в редакторе. Щелкните вкладку «Source» для просмотра исходного кода графического интерфейса.
    2. Выполните прокрутку вниз и просмотрите реализованные методы jButton1ActionPerformed() , jButton2ActionPerformed() и jButton3ActionPerformed() . Эти методы называются обработчиками событий.
    3. Теперь перейдите к методу initComponents() . Если этот метод отсутствует, найдите строку Generated Code и щелкните знак + рядом с этой строкой для отображения скрытого метода initComponents() .
    4. Обратите внимание на синий блок, окружающий метод initComponents() . Этот код был автоматически создан средой IDE и не может быть изменен пользователем.
    5. Теперь посмотрите на сам метод initComponents() . Помимо прочего, он содержит код, инициализирующий элементы графического интерфейса и помещающий их в форму. Этот код создается и обновляется автоматически при размещении и изменении элементов в режиме проектирования.
    6. В методе initComponents() найдите следующий фрагмент: jButton3.setText(«Exit»); jButton3.addActionListener(new java.awt.event.ActionListener() < public void actionPerformed(java.awt.event.ActionEvent evt) < jButton3ActionPerformed(evt); >>);

    В этом месте к элементу графического интерфейса, в данном случае к jButton3 , добавляется объект прослушивания событий «ActionListener». Интерфейс «ActionListener» имеет метод «actionPerformed» объекта «ActionEvent», который реализуется путем простого вызова обработчика событий jButton3ActionPerformed . Теперь эта кнопка реагирует на события действий. Каждый раз при нажатии кнопки создается событие «ActionEvent», которое передается в метод «actionPerformed» интерфейса прослушивания событий, исполняющий код, предусмотренный разработчиком для этого события в обработчике событий.

    Учебная карта по приложениям с графическим интерфейсом Java

    В этой короткой статье хочу описать процесс создания небольшой программы, поддерживающей GUI на языке Java . Предполагается, что читатель знаком с основами языка Java .

    И так, какие инструменты нам необходимы:

    • Java Virtual Machine (OpenJDK или Oracle JDK)
    • Intellij IDEA (или другое IDE для Java)

    После установки необходимого софта, открываем Intellij IDEA и создаем новый проект: File -> New Project…

    Я назвал проект guiBase . Как видно на скрине, папка src не содержит ничего, поэтому создаем в ней наш главный класс, содержащий функцию main .

    Содеражние главного класса видите выше. Мы уже сейчас можем создать проект (Build project ) и запустить его (Run ). Внизу в терминале вашего IDE вы увидите сообщение “Hello, Govzalla!“ . Но как вы сами поняли — GUI он не поддерживает.

    На данном этапе у нас уже есть работающая программа, но без поддержки GUI. А сейчас в той же папке src создадим GUI Form : New -> GUI Form

    Открываем созданную GUI форму, нажимаем на JPanel и задаем его идентификатор в поле field name , я задал panel .

    После чего перетаскиваем на форму с правой стороны JTextField , JPasswordField и JButton :

    Осталось добавить код и связать нашу форму с ним. Когда мы добавляли форму MainWindow , автоматически создался и класс MainWindow , этот класс является классом созданной формы, т.е. именно этот класс будет обслуживать все события данной формы.

    Хотя класс нашего окна содержит необходимые элементы, но даже сейчас он не имеет ничего общего с GUI, поэтому расширим его с помощью JFrame и унаследуем всю основную и необходимую функциональность GUI.

    В данный момент мы имеем форму MainWindow и класс MainWindow расширенный с помощью JFrame . Сейчас нам необходимо определить все добавленные GUI элементы как содержание класса MainWindow
    this.getContentPane().add(panel);
    После чего содержание файла MainWindow.java будет изменено следующим образом:

    Если попробуете запустить код, вы снова увидите то же самое сообщение “Hello, Govzalla!“. Дело в том, что мы создали класс и форму к нему, но не создали инстанцию этого класса.

    Пришло время изменить файл Main.java и добавить туда код создания нашего GUI:

    Import java.awt.*; public >

    Нажав на кнопку Button вы заметите, что программа никак не реагирует. Дело в том, что мы еще не добавили слушатель (Listener ) для событий (Events ) кнопки Button.

    Слушатель событий (Event listener ) JButton должен быть имплентацией адаптера ActionListener , поэтому добавим следующий код в тело класса MainWindow :

    Метод actionPerformed () будет обрабатывать все события кнопки button1, но для начала еще необходимо указать кнопке button1 какой класс будет обрабатывать, поэтому добавим следующий код в конструктор класса MainWIndow:
    this.button1.addActionListener(new MyButtonListener());
    Чтобы наш обработчик не был бессмысленным добавим следующий код в метод actionPerformed ():

    Сейчас уже программа будет правильно реагировать на события, не на все события, конечно. Например, если попытаться отключить программу нажав на крестик, окно исчезнет, но программа все еще будет работать, т.к. не добавлен обработчик событий главного окна.

    Экранной формой называется область, которая видна на экране в виде окна с различными элементами — кнопками, текстом, выпадающими списками и т.п. А сами эти элементы называются компонентами.

    Среды, позволяющие в процессе разработки приложения в интерактивном режиме размещать на формы компоненты и задавать их параметры, называются RAD-средами. RAD расшифровывается как Rapid Application Development — быстрая разработка приложений.

    В NetBeans и других современных средах разработки такой процесс основан на объектной модели компонентов, поэтому он называется Объектно-Ориентированным Дизайном (OOD – Object-Oriented Design).

    NetBeans является RAD-средой и позволяет быстро и удобно создавать приложения с развитым графическим пользовательским интерфейсом (GUI). Хотя языковые конструкции Java, позволяющие это делать, не очень просты, на начальном этапе работы с экранными формами и их элементами нет необходимости вникать в эти тонкости. Достаточно знать основные принципы работы с такими проектами.

    Во-первых, с самого начала осваивается создание полноценных приложений, которые можно использовать в полезных целях. Трудно месяцами изучать абстрактные концепции, и только став профессионалом иметь возможность сделать что-то такое, что можно показать окружающим. Гораздо интереснее и полезнее сразу начать применять полученные знания на практике.

    Во-вторых, такой интерфейс при решении какой-либо задачи позволяет лучше сформулировать, какие параметры надо вводить, какие действия и в какой последовательности выполнять, и что в конце концов получается. И отобразить всё это на экране: вводимым параметрам будут соответствовать пункты ввода текста, действиям – кнопки и пункты меню, результатам – пункты вывода текста.

    Пример открытия проекта с существующим исходным кодом.

    В NetBeans 5.0 имелся хороший пример GUI-приложения, однако в NetBeans 5.5 он отсутствует. Поэтому для дальнейшей работы следует скопировать аналогичный пример с сайта автора или сайта, на котором выложен данный учебный курс. Пример называется JavaApplicationGUI_example.

    Сначала следует распаковать zip-архив, и извлечь находящуюся в нём папку с файлами проекта в папку с вашими проектами (например, C:\Documents and Settings\User). Затем запустить среду NetBeans, если она не была запущена, и закрыть имеющиеся открытые проекты, чтобы они не мешали. После чего выбрать в меню File/Open Project, либо или на панели инструментов иконку с открывающейся фиолетовой папочкой, либо нажать комбинацию клавиш + +O. В открывшемся диалоге выбрать папку JavaApplicationGUI_example (лучше в неё не заходить, а просто установить выделение на эту папку), после чего нажать кнопку Open Project Folder.

    При этом, если не снимать галочку “Open as Main Project”, проект автоматически становится главным.

    В окне редактора исходного кода появится следующий текст:

    * @author Вадим Монахов

    public class GUI_application extends javax.swing.JFrame <

    * Creates new form GUI_application

    /** This method is called from within the constructor to

    * initialize the form.

    * WARNING: Do NOT modify this code. The content of this method is

    * always regenerated by the Form Editor.

    private void exitMenuItemActionPerformed(java.awt.event.ActionEvent evt)

    * @param args the command line arguments

    public static void main(String args) <

    public void run() <

    // Variables declaration — do not modify

    private javax.swing.JMenuItem aboutMenuItem;

    private javax.swing.JMenuItem contentsMenuItem;

    private javax.swing.JMenuItem copyMenuItem;

    private javax.swing.JMenuItem cutMenuItem;

    private javax.swing.JMenuItem deleteMenuItem;

    private javax.swing.JMenu editMenu;

    private javax.swing.JMenuItem exitMenuItem;

    private javax.swing.JMenu fileMenu;

    private javax.swing.JMenu helpMenu;

    private javax.swing.JMenuBar menuBar;

    private javax.swing.JMenuItem openMenuItem;

    private javax.swing.JMenuItem pasteMenuItem;

    private javax.swing.JMenuItem saveAsMenuItem;

    private javax.swing.JMenuItem saveMenuItem;

    // End of variables declaration

    Поясним некоторые его части. Указание пакета java_gui_example, в котором будет располагаться код класса приложения, нам уже знакомо. Декларация самого класса GUI_application в данном случае несколько сложнее, чем раньше:

    public class GUI_application extends javax.swing.JFrame

    Она означает, что задаётся общедоступный класс GUI_application, который является наследником класса JFrame, заданного в пакете swing, вложенном в пакет javax. Слово extends переводится как “расширяет” (класс-наследник всегда расширяет возможности класса-прародителя).

    Общедоступный конструктор GUI_application()создаёт объект приложения и инициализирует все его компоненты, методом initComponents(), автоматически генерируемом средой разработки и скрываемом в исходном коде узлом +Generated Code.

    Развернув узел, можно увидеть реализацию этого метода, но изменить код нельзя. Мы не будем останавливаться на том, что в нём делается.

    private void exitMenuItemActionPerformed

    Он будет обсуждаться чуть позже. Метод

    public static void main(String args)

    нам уже знаком – это главный метод приложения. Он является методом класса нашего приложения и автоматически выполняется Java-машиной при запуске приложения. В данном примере метод создаёт экранную форму приложения и делает её видимой. Для того, чтобы понять, как это делается, потребуется изучить довольно много материала в рамках данного курса.

    Запущенное приложение. Приложение с раскрытым меню.

    При запуске приложения экранная форма выглядит так, как показано на рисунке. В ней уже имеется заготовка меню, которое способно разворачиваться и сворачиваться, и даже работает пункт Exit – “Выход”. При нажатии на него происходит выход из приложения.

    Именно за нажатие на этот пункт меню несёт ответственность оператор exitMenuItemActionPerformed. При проектировании экранной формы он назначен в качестве обработчика события – подпрограммы, которая выполняется при наступлении события. В нашем случае событием является выбор пункта меню Exit, и при этом вызывается обработчик exitMenuItemActionPerformed. Внутри него имеется всего одна строчка

    Она вызывает прекращение выполнения метода main и выход из приложения с нулевым кодом завершения. Как правило, ненулевой код завершения возвращают при аварийном завершении приложения для того, чтобы по его значению можно было выяснить причины “вылета” программы.

    Редактор экранных форм

    Нажмём закладку Design (“дизайн”) в левой верхней части редактора исходного кода. При этом мы переключимся из режима редактирования исходного кода (активна закладка Source – “исходный код”) в режим редактирования экранной формы, как это показано на рисунке.

    Редактирование экранной формы.

    Вместо исходного кода показывается внешний вид экранной формы и находящиеся на ней компоненты. Справа от окна, в котором показывается экранная форма в режиме редактирования, расположены окна Palette (“палитра”) палитры компонентов и окно Properties (“свойства”) показа и редактирования свойств текущего компонента.

    Свойство – это поле данных, которое после изменения значения может проделать какое-либо действие. Например, при изменении значения ширины компонента отрисовать на экране компонент с новой шириной. “Обычное” поле данных на такое не способно. Таким образом, свойство – это “умное поле данных”.

    Палитра компонентов предназначена для выбора типа компонента, который нужен программисту для размещения на экранной форме. Например, добавим на нашу форму компонент типа JButton (сокращение от Java Button – “кнопка Java”). Для этого щёлкнем мышью по пункту JButton на палитре и передвинем мышь в нужное место экранной формы. При попадании мыши в область экранной формы на ней появляется кнопка стандартного размера, которая передвигается вместе с мышью. Щелчок в нужном месте формы приводит к тому, что кнопка остаётся в этом месте. Вокруг неё показываются рамка и маленькие квадратики, обозначающие, что наш компонент является выделенным. Для него осуществляется показ и редактирование свойств в окне Properties.

    Кроме того, от выделенного компонента исходят линии, к которым идет привязка для задания положения компонента на форме.

    По умолчанию надписи на компонентах задаются как имя типа, после которого идёт номер компонента. Но вместо заглавной буквы, в отличие от имени типа, используется строчная. Поэтому первая кнопка будет иметь надпись jButton1, вторая – jButton2, и так далее. Такие же имена будут приобретать автоматически создаваемые в исходном коде переменные, соответствующие кнопкам.

    Изменить надпись на кнопке можно несколькими способами. Во-первых, сделав по ней двойной щелчок, и отредактировав текст. Во-вторых, перейдя в окно Properties, изменив значение свойства Text и нажав для завершения ввода. В-третьих, изменив аналогичным образом свойство label. Наконец, можно в окне Properties отредактировать текст не в однострочном поле ввода значений для свойств Text или label, а открыв многострочный редактор путём нажатия на кнопку, находящуюся справа от пункта редактирования значения свойства. Однако многострочность редактора не помогает сделать надпись на кнопке многострочной.

    Введём на кнопке надпись “OK” – используем эту кнопку для выхода из программы.

    Редактирование свойств компонента

    Размер компонента задаётся мышью путём хватания за рамку и расширения или сужения по соответствующим направлениям. Установка на новое место – перетаскиванием компонента мышью.

    Некоторые свойства выделенного компонента (его размер, положение, текст) можно изменять непосредственно в области экранной формы. Однако большинство свойств просматривают и меняют в окне редактирования свойств. Оно состоит из двух столбцов: в левом показываются имена свойств, в правом – их значения. Значения, стоящие в правом столбце, во многих случаях могут быть отредактированы непосредственно в ячейках таблицы. При этом ввод оканчивается нажатием на или выходом из редактируемой ячейки, а отменить результаты неоконченного ввода можно нажатием .

    В правой части каждой ячейки имеется кнопка с надписью “…” – в современных операционных системах принято добавлять три точки в названии пунктов меню и кнопок, после нажатия на которые открывается диалоговое окно. В данном случае раскрывается окно специализированного редактора соответствующего свойства, если он существует.

    Если требуется просматривать и редактировать большое количество свойств компонента, бывает удобнее щёлкнуть правой кнопкой мыши по нужному компоненту и в появившемся всплывающем меню выбрать пункт “Properties”. В этом случае откроется отдельное окно редактирования свойств компонента. Можно держать открытыми одновременно произвольное количество таких окон.

    Булевские свойства в колонке значений свойств показываются в виде кнопок выбора checkbox – квадратиков с возможностью установки галочки внутри. Если галочки нет, значение свойства false, если есть – true.

    Перечислим на примере кнопки ряд некоторых важнейших свойств, которые можно устанавливать для компонентов. Многие из них относятся и к другим компонентам.

    Название свойства Что оно задаёт
    background Цвет фона
    componentPopupMenu Позволяет назначать всплывающее меню, появляющееся по нажатию правой кнопкой мыши в области компонента.
    font Фонт, которым делается надпись на компоненте.
    foreground Цвет фонта, которым делается надпись на компоненте.
    icon Картинка, которая рисуется на компоненте рядом с текстом.
    text Текст (надпись) на компоненте.
    toolTipText Всплывающая подсказка, появляющаяся через некоторое время при наведении курсора мыши на компонент.
    border Тип рамки вокруг компонента.
    borderPainted Рисуется ли рамка вокруг компонента.
    contentAreaFilled Имеется ли заполнение цветом внутренней области компонента (для кнопок оно создаёт эффект трёхмерности, без заполнения кнопка выглядит плоской).
    defaultCapable Способна ли кнопка быть “кнопкой по умолчанию”: при нажатии автоматически происходит нажатие “кнопки по умолчанию” (такая кнопка на экранной форме должна быть одна).
    enabled Доступен ли компонент. По умолчанию все создаваемые на форме компоненты доступны. Недоступные компоненты рисуются более блеклыми красками.

    В качестве примера добавим всплывающую подсказку для нашей кнопки: введём текст “Эта кнопка предназначена для выхода из программы” в поле, соответствующее свойству toolTipText. К сожалению, подсказка может быть только однострочной – символы перевода на новую строку при выводе подсказки игнорируются, даже если они заданы в строке программным путём.

    Наконец, зададим действие, которое будет выполняться при нажатии на кнопку – обработчик события (event handler) нажатия на кнопку. Для этого сначала выделим кнопку, после чего щёлкнем по ней правой кнопкой мыши, и в появившемся всплывающем меню выберем пункт Events/Action/actionPerformed.

    Назначение обработчика события

    Events означает “События”, Action – “Действие”, actionPerformed – “выполненное действие”.

    После этого произойдёт автоматический переход в редактор исходного кода, и там появится заготовка обработчика события:

    // TODO add your handling code here:

    Аналогичный результат можно получить и более быстрым способом – после того, как мы выделим кнопку в окне редактирования формы (Design), в окне Navigator показывается и выделяется имя этой кнопки. Двойной щелчок по этому имени в окне навигатора приводит к созданию заготовки обработчика события.

    Рядом с обработчиком jButton1ActionPerformed будет расположен уже имеющийся обработчик события, срабатывающий при нажатии на пункт меню “Выход”:

    private void exitMenuItemActionPerformed(java.awt.event.ActionEvent evt) <

    Заменим в нашем обработчике события строку с комментарием на код, вызывающий выход из программы:

    private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) <

    Теперь после запуска нашего приложения подведение курсора мыши к кнопке приведёт к появлению всплывающей подсказки, а нажатие на кнопку – к выходу из программы.

    Часто встречающийся случай – показ сообщения при наступлении какого-либо события, например – нажатия на кнопку. Этом случае вызывают панель с сообщением:

    Если классы пакета javax.swing импортированы, префикс javax.swing при вызове не нужен.

    Внешний вид приложения

    На этапе редактирования приложения внешний вид его компонентов соответствует платформе. Однако после запуска он становится совсем другим, поскольку по умолчанию все приложения Java показываются в платформо-независимом виде.:

    Внешний вид запущенного приложения с платформо-независимым пользовательским интерфейсом, задаваемым по умолчанию

    Кроме того, наше приложение появляется в левом верхнем углу экрана, а хотелось бы, чтобы оно появлялось в центре.

    Для того, чтобы показать приложение в платформо-ориентированном виде (то есть в том виде, который использует компоненты и настройки операционной системы), требуется изменить код конструктора приложения, вставив перед вызовом метода initComponents задание типа пользовательского интерфейса (User’s Interface, сокращённо UI):

    Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();

    Dimension frameSize = getSize();

    Внешний вид запущенного приложения с платформо-ориентированным пользовательским интерфейсом в операционной системе Windows ® XP

    Код, следующий после вызова initComponents(), предназначен для установки окна приложения в центр экрана.

    Имеется возможность задания ещё одного платформо-независимого вида приложения – в стиле Motiff, используемого в операционной системе Solaris ® . Для установки такого вида вместо вызова

    Внешний вид запущенного приложения с платформо-независимым пользовательским интерфейсом в стиле Motiff

    Использованные конструкции станут понятны читателю после изучения дальнейших разделов методического пособия.

    Для того, чтобы не запутаться в разных проектах и их версиях, особенно с учётом того, что учебные проекты бывает необходимо часто переносить с одного компьютера на другой, следует серьёзно отнестись к ведению проектов. Автором в результате многолетней практики работы с разными языками и средами программирования выработана следующая система (откорректированная в применении к среде NetBeans):

    · Под каждый проект создаётся папка с названием проекта. Будем называть её папкой архива для данного проекта. Названия используемых папок могут быть русскоязычными, как и имена приложений и файлов.

    · При создании нового проекта среда разработки предлагает ввести имя папки, где его хранить — следует указать имя папки архива. Кроме того, предлагается ввести имя проекта. Это имя будет использовано средой NetBeans для создания папки проекта, так и для названия вашего приложения. Для того, чтобы облегчить работу с вашим приложением в разных странах, рекомендуется делать это название англоязычным. В папке проекта среда разработки автоматически создаст систему вложенных папок проекта и все его файлы. Структура папок проектов NetBeans была описана ранее.

    · Если берётся проект с существующим исходным кодом, его папка копируется в папку нашего архива либо вручную, либо выбором соответствующей последовательности действий в мастере создания проектов NetBeans.

    · При получении сколько-нибудь работоспособной версии проекта следует делать его архивную копию. Для этого в открытом проекте в окне “Projects” достаточно щелкнуть правой кнопкой мыши по имени проекта, и в появившемся всплывающем меню выбрать пункт “Copy Project”. Откроется диалоговая форма, в которой предлагается автоматически образованное имя копии – к первоначальному имени проекта добавляется подчёркивание и номер копии. Для первой копии это _1, для второй _2, и так далее. Причём головная папка архива по умолчанию остаётся той же, что и у первоначального проекта. Что очень удобно, поскольку даёт возможность создавать копию всего тремя щелчками мышки без набора чего-либо с клавиатуры.

    Создание рабочей копии проекта

    Скопированный проект автоматически возникает в окне “Projects”, но не становится главным. То есть вы продолжаете работать с прежним проектом, и все его открытые окна сохраняются. Можно сразу закрыть новый проект – правой кнопкой мыши щёлкнуть по его имени, и в появившемся всплывающем меню выбрать пункт “Close Project”.

    Для чего нужна такая система ведения проектов? Дело в том, что у начинающих программистов имеется обыкновение разрушать результаты собственного труда. Они развивают проект, не сохраняя архивов. Доводят его до почти работающего состояния, после чего ещё немного усовершенствуют, затем ещё – и всё перестаёт работать. А так как они вконец запутываются, восстановить работающую версию уже нет возможности. И им нечего предъявить преподавателю или начальнику!

    Поэтому следует приучиться копировать в архив все промежуточные версии проекта, более работоспособные, чем уже сохранённые в архив. В реальных проектах трудно запомнить все изменения, сделанные в конкретной версии, и, что важнее, все взаимосвязи, вызвавшие эти изменения. Поэтому даже опытным программистам время от времени приходится констатировать: “Ничего не получается!” И восстанавливать версию, в которой ещё не было тех нововведений, которые привели к путанице. Кроме того, часто бывает, что новая версия в каких-то ситуациях работает неправильно. И приходится возвращаться на десятки версий назад в поисках той, где не было таких “глюков”. А затем внимательно сравнивать работу двух версий, выясняя причину неправильной работы более поздней версии. Или убеждаться, что все предыдущие версии также работали неправильно, просто ошибку не замечали.

  4. Внешняя политика СССР в годы войны. Ленд-лиз. Тегеранская конференция. Ялтинская и Потсдамская конференции 1945 г. Создание ООН.
  5. Внешняя политика СССР в годы войны.Ленд-лиз. Тегеранская конференция. Ялтинская и Потсдамская конференция 1945г.Создание ООН.
  6. Возобновелние деятельности БСГ. Создание белнац партий и организаций

    Одно из важных достоинств Java состоит в том, что это не только язык, но и стандартизованная объектно-ориентированная среда выполнения. Любопытно проследить, как в рамках Java решаются традиционные программистские проблемы. Мы остановимся на оконном графическом интерфейсе.

    Вместе с различными приятными (главным образом для пользователя) свойствами, оконный интерфейс привносит и довольно неприятные (для разработчика) проблемы. Одна из них — это переносимость приложений между разными платформами. Переносимость является проблемой и без графического интерфейса, однако наличие такового делает ее многократно сложнее.

    Дело в том, что каждая оконная среда — это сложный мир, со своими законами, набором строительных блоков и приемов программирования. Motif не похож на MS-Windows и оконную систему Macintosh. По-разному представляются примитивные элементы интерфейса, по-разному обрабатываются внешние события, по-разному происжодит рисование на экране и т.д.

    Вместе с тем, по своей сути оконная среда — просто идеальное поле деятельности для объектного программирования. Даже человеку, неискушенному в объектно-ориентированных методах проектирования, ясно, что такие вещи, как кнопки, текстовые поля, меню, вполне заслуживают названия объектов, как бы это слово ни понималось. Иначе говоря, вполне понятно, что такое “кнопка вообще”, “список вообще” и т.д.

    Все это дает основания надеяться, что с помощью объектно-ориентированного подхода можно получить по-настоящему высокоуровневую и переносимую оконную среду, основанную на абстрактных типах данных.

    Данная особенность оконных сред проявилась, в частности, в появлении довольно большого количества различных классовых библиотек, “обертывающих” оригинальные оконные системы. В качестве примеров можно привести MFC, OWL, Zink и многие другие.

    Вот и среди стандартных Java-библиотек присутствует AWT или Abstract Windowing Toolkit — абстрактный оконный инструментарий.

    AWT является системой классов для поддержки программирования в оконной среде. Его “абстрактность” проявляется в том, что все, зависящее от конкретной платформы, хорошо локализовано и спрятано. В AWT реализованы такие простые и понятные вещи, как кнопки, меню, поля ввода; простые и понятные средства организации интерфейса — контейнеры, панели, менеджеры геометрии.

    Основы построения графического пользовательского интерфейса Компоненты и контейнеры

    Если посмотреть на любое оконное приложение, то легко увидеть, что интерфейсная часть состоит из объектов, объединенных в группы. В AWT объекты называются компонентами (на самом деле они все являются наследниками класса Component), а группы объектов реализованы с помощью так называемых контейнеров. Отметим, что любой контейнер — это тоже компонента, поэтому группы объектов могут быть вложены друг в друга. Как обычно, меню стоят особняком.

    К числу примитивных компонент относятся:

    Взаимодействие интерфейсных компонент с пользователем реализовано с помощью аппарата событий, о котором будет рассказано ниже.

    Создание в NetBeans приложения Java с графическим интерфейсом. GUI в Java c помощью JFace: Создание окна приложения

    Мы догадываемся, что порядком утомили вас, рассказывая все время о программах вывода текстовых сообщений на консоль. На этом занятии эта «унылая» череда примеров будет, наконец, прервана: мы покажем как на Java создаются окна и вы убедитесь, что это простая задача. Вот наш код (обсуждать его мы начнем на следующем занятии, т.к. в нем много-много особенностей, знать которые действительно нужно):

    public class MoneyForNothing extends JFrame <

    setTitle («Добро пожаловать в Money for Nothing»);

    setSize (new Dimension (600, 400));

    public static void main (String args) <

    MoneyForNothing mfn = new MoneyForNothing ();

    А вот этот же код в окне редактирования FAR-а:

    Кстати, рекомендуем сразу набирать исходные коды программ в кодировке CP1251 (или в просторечии, в кодировке Windows): переключение кодировок осуществляется клавишей F8, а текущая кодировка высвечивается в строке состояния над областью редактирования.

    Точка входа осталась без изменений, а вот остальной код порядком изменился (но не будем забегать вперед). После компиляции и запуска вы должны увидеть следующее:

    Поздравляем – всего в несколько строк вы создали настоящее графическое окно! Его можно перетаскивать, изменять размеры, сворачивать, разворачивать и закрывать. Правда, окно у нас получилось какое-то блеклое, прямо сказать — «страшненькое». Кроме того, окно выводится в левом верхнем углу экрана, а хотелось бы в центре – там им удобнее пользоваться, да и выглядит такой вывод приятнее. Так что давайте займемся небольшой «полировкой».

    Сначала решим вторую задачу – центровка окна. Тут мы рекомендуем остановиться и подумать – как бы вы это сделали?

    Подскажем, что в графической библиотеке Java есть есть метод setLocation, которому в качестве параметров передаются координаты верхнего левого угла окна (именно от этого угла производится размещение других графических элементов внутри окна). Но если задать эти параметры «в лоб», то почти наверняка ничего путного не получится т.к. на другом мониторе с другим разрешением окно окажется совсем не там, где вы рассчитывали. Следовательно, координаты нужно задавать умнее.

    Все, что нужно для размещения окна по центру, это знать размеры самого окна (они, кстати, заданы в конструкторе и составляют прямоугольник 600 на 400 пикселей) и разрешение экрана, а потом, путем нехитрой арифметики, вычислить необходимые координаты левого верхнего угла. Это достигается путем размещения следующего кода

    Dimension sSize = Toolkit.getDefaultToolkit ().getScreenSize (),

    if (fSize.height > sSize.height)

    if (fSize.width > sSize.w >

    setLocation ((sSize.width — fSize.width)/2,

    непосредственно за строкой setSize (new Dimension (600, 400)); в конструкторе. Внесите необходимые изменения в исходный код, откомпилируйте программу и запустите на исполнение; окно должно появиться в центре экрана монитора.

    Теперь несколько слов о внешнем виде окна. Его странный вид объясняется тем, что разработчики Java стремились добиться того, чтобы вне зависимости от аппаратной платформы и программной «начинки», все графические элементы (окна, кнопки, списки и проч.) имели единую отрисовку и единую цветовую гамму. Для этого они разработали специальный стиль, который назвали «METAL». Если разработчик не предпримет специальных усилий, то элементы графического интерфейса в его программах будут выглядеть именно в этом стиле, без учета особенностей конкретных компьютеров и их программного обеспечения. В отдельных случаях в этом есть смысл, но все-таки, согласитесь, что гораздо лучше, если программа, запущенная на Windows будет похожа на windows-программу, а запущенная на LINUX будет похожа на linux-программу. Добиться этого легко. Все, что нужно — включить в точку входа, перед созданием экземпляра класса следующий код:

    catch (Exception lfe) <>

    Так мы и поступим. Теперь, после компиляции обновленной версии нашей программы и запуска ее на исполнение, графическое окно будет выглядеть гораздо «пристойнее»:

    В зависимости от настройки свойств экрана вашего монитора отображение окна будет отличаться; мы используем классическую тему Windows XP. У вас это же окно может выглядеть, например, так:

    Убедитесь, что все работает как ожидалось: окно выводится в центре экрана и его внешний вид соответствует ожидаемому.

    На этом мы закончим наше первое занятие, посвященное графическим интерфейсам. В нем мы показали «фасад», однако совершенно оставили «за бортом» множество вопросов, которые чрезвычайно важны и без которых невозможно программирование на Java вообще и графических интерфейсов в частности. Мы начнем заниматься этими вопросами на следующем занятии, а пока – поиграйтесь с тем исходным кодом, который есть.

    В качестве упражнения, рассчитайте, к примеру, координаты вывода нашего окна в правом нижнем углу экрана и проверьте результат.

    Другое упражнение проще по исполнению, но вам нужно будет воспользоваться документацией (надо же когда-то начинать, в самом деле): сделайте так, чтобы нельзя было изменять размеры окна, т.е. чтобы область системных кнопок выглядела так, как на рисунке

    (подсказка: ищите информацию по ключевым словам javax и JFrame). Так что, засучите рукава и удачи!

    Может случиться, что сформированное окно будет полностью или частично невидимо (из-за того, что вы неправильно рассчитали координаты его вывода на экран). Кнопки управления окна могут также оказаться недоступными. Как же прервать работу приложения не снимая задачу в «Диспетчере задач» или не перезагружая компьютер?

    Поскольку мы запускаем программы на исполнение из FAR-а, то прерывание исполнения программы на Java достигается нажатием комбинации клавиш Control-C (здесь «C» — латинская буква, не путайте ее со сходной по начертанию буквой кириллической).

    В Java есть 2 основных пакета для создания графических интерфейсов (Graphics User Interface). Это Abstract Windows Toolkit (AWT) и Swing. AWT использует виджеты операционной системы, поэтому эта библиотека немного быстрее. Но на мой взгляд, Swing более хорошо спроектирован.

    В данном туториале мы рассмотрим основные элементы библиотеки Swing и создадим простой интерфейс (GUI) в качестве примера.

    Для группировки компонент интерфейса используются контейнеры (Container). Для создания основного контейнера для приложения чаще всего используется контейнер JFrame (есть еще JWindows и JApplet). Проще всего унаследоваться от JFrame тем самым получить доступ ко множеству методов, например:

    setBounds(x, y, w, h) — указывает координаты верхней левой вершины окна, а также его ширину и высоту.

    setResizable(bool) — указывает, можно ли изменять размер окна.

    setTitle(str) — устанавливает название окна.

    setVisible(bool) — собственно отображает окно.

    setDefaultCloseOperation(operation) — указывает операцию, которая будет произведена при закрытии окна.

    Основные элементы управления:

    • JLabel — элемент для отображения фиксированного текста;
    • JTextField — простой edit-box;
    • JButton — обычная кнопка (button);
    • JCheckBox — элемент выбора (аналог checkbox);
    • JRadioButton — радио кнопка


    Как видите, все довольно просто и логично.

    При отображении элементов управления используются специальные менеджеры — LayoutManager. У всех LayoutManager»ов есть методы для добавления у удаления элементов.

    FlowLayout — используется для последовательного отображения элементов. Если элемент не помещается в конкретную строку, он отображается в следующей.

    GridLayout — отображения элементов в виде таблицы с одинаковыми размерами ячеек.

    BorderLayout — используется при отображении не более 5 элементов. Эти элементы располагаются по краям фрейма и в ценрте: North, South, East, West, Center.

    BoxLayout — отображает элементы в виде рядка или колонки.

    GridBagLayout — позволяет назначать месторасположение и размер каждого виджета. Это самый сложный, но и самый эффективный вид отображения.

    Стоит еще обратить внимание на обработку событий. Для этого используются так называемые Event Listeners.

    Ну все, довольно теории, перейдем к примеру GUI:

    Import java.awt.*; import java.awt.event.*; import javax.swing.*; public , JOptionPane.PLAIN_MESSAGE); > > public static vo >

    getContentPane возвращает контейнер верхнего уровня. ButtonGroup служит для создания группы взаимосвязанных радио-кнопок.

    Внутренний класс ButtonActionListener реализует интерфейс ActionListener. Для этого необходимо предоставить имплементацию метода actionPerformed.

    JOptionPane служит для отображения диалоговых окон.

    Жду ваших вопросов и комментариев. Если вы хотите больше узнать о Swing, скажите об этом, и в скором времени я напишу еще одну статью с более сложными приемами и компонентами.

    Графический интерфейс в Java прошел весьма тернистый путь развития и становления. Долгое время его обвиняли в медленной работе, жадности к ресурсам системы и ограниченной функциональности.

    Java AWT

    Первой попыткой Sun создать графический интерфейс для Java была библиотека AWT (Abstract Window Toolkit) — инструментарий для работы с различными оконными средами. Sun сделал прослойку на Java, которая вызывает методы из библиотек, написанных на С. Библиотечные методы AWT создают и используют графические компоненты операционной среды. С одной стороны, это хорошо, так как программа на Java похожа на остальные программы в рамках одной ОС. Но при запуске ее на другой платформе могут возникнуть различия в размерах компонентов и шрифтов, которые будут портить внешний вид программы.

    Чтобы обеспечить мультиплатформенность AWT интерфейсы вызовов компонентов были унифицированы, вследствии чего их функциональность получилась немного урезанной. Да и набор компонентов получился довольно небольшой. Так например, в AWT нет таблиц, а в кнопках не поддерживается отображение иконок. Тем не менее пакет java.awt входит в Java с самого первого выпуска и его можно использовать для создания графических интерфейсов.

    Таким образом, компоненты AWT не выполняют никакой «работы». Это просто «Java-оболочка» для элементов управления той операционной системы, на которой они работают. Все запросы к этим компонентам перенаправляются к операционной системе, которая и выполняет всю работу.

    Использованные ресурсы AWT старается освобождать автоматически. Это немного усложняет архитектуру и влияет на производительность. Написать что-то серьезное с использованием AWT будет несколько затруднительно. Сейчас ее используют разве что для апплетов.

    Основные концепции SWING

    Вслед за AWT Sun разработала графическую библиотеку компонентов Swing , полностью написанную на Java. Для отрисовки используется 2D, что принесло с собой сразу несколько преимуществ. Набор стандартных компонентов значительно превосходит AWT по разнообразию и функциональности. Swing позволяет легко создавать новые компоненты, наследуясь от существующих, и поддерживает различные стили и скины.

    Создатели новой библиотеки пользовательского интерфейса Swing не стали «изобретать велосипед» и в качестве основы для своей библиотеки выбрали AWT. Конечно, речь не шла об использовании конкретных тяжеловесных компонентов AWT (представленных классами Button, Label и им подобными). Нужную степень гибкости и управляемости обеспечивали только легковесные компоненты. На диаграмме наследования представлена связь между AWT и Swing.

    Важнейшим отличием Swing от AWT является то, что компоненты Swing вообще не связаны с операционной системой и поэтому гораздо более стабильны и быстры. Такие компоненты в Java называются легковесными (lightweight), и понимание основных принципов их работы во многом объяснит работу Swing.

    Swing контейнеры высшего уровня

    Для создания графического интерфейса приложения необходимо использовать специальные компоненты библиотеки Swing, называемые контейнерами высшего уровня (top level containers). Они представляют собой окна операционной системы, в которых размещаются компоненты пользовательского интерфейса. К контейнерам высшего уровня относятся окна JFrame и JWindow, диалоговое окно JDialog, а также апплет JApplet (который не является окном, но тоже предназначен для вывода интерфейса в браузере, запускающем этот апплет). Контейнеры высшего уровня Swing представляют собой тяжеловесные компоненты и являются исключением из общего правила. Все остальные компоненты Swing являются легковесными.

    Простой Swing пример создания оконного интерфейса JFrame .

    Import java.awt.Dimension; import javax.swing.JFrame; import javax.swing.JLabel; public ); frame.getContentPane().add(label); frame.setPreferredSize(new Dimension(200, 100)); frame.pack(); frame.setVisible(true); > public static void main(String args) < JFrame.setDefaultLookAndFeelDecorated(true); javax.swing.SwingUtilities.invokeLater(new Runnable() < public void run() < createGUI(); >>); > >

    Конструктор JFrame() без параметров создает пустое окно. Конструктор JFrame(String title) создает пустое окно с заголовком title. Чтобы создать простейшую программу с пустым окном необходимо использовать следующие методы:

    • setSize(int width, int height) — определение размеров окна;
    • setDefaultCloseOperation(int operation) — определение действия при завершении программы;
    • setVisible(boolean visible) — сделать окно видимым.

    Если не определить размеры окна, то оно будет иметь нулевую высоту независимо от того, что в нем находится. Размеры окна включают не только «рабочую» область, но и границы и строку заголовка.

    Метод setDefaultCloseOperation определяет действие, которое необходимо выполнить при «выходе из программы». Для этого следует в качестве параметра operation передать константу EXIT_ON_CLOSE, описанную в классе JFrame.

    По умолчанию окно создается невидимым. Чтобы отобразить окно на экране вызывается метод setVisible с параметром true. Если вызвать его с параметром false, окно станет невидимым.

    Графический интерфейс java swing примера создания окна JFrame представлен на следующем рисунке.

    Для подключения библиотеки Swing в приложении необходимо импортировать библиотеку javax.swing .

    Каждый раз, как только создается контейнер высшего уровня, будь то обычное окно, диалоговое окно или апплет, в конструкторе этого контейнера создается корневая панель JRootPane . Контейнеры высшего уровня Swing следят за тем, чтобы другие компоненты не смогли «пробраться» за пределы JRootPane.

    Корневая палель JRootPane добавляет в контейнеры свойство «глубины», обеспечивая возможность не только размещать компоненты один над другим, но и при необходимости менять их местами, увеличивать или уменьшать глубину расположения компонентов. Такая возможность необходима при создании многодокументного приложения Swing , у которого окна представляют легковесные компоненты, располагающиеся друг над другом, а также выпадающими (контекстными) меню и всплывающими подсказками.

    На следующем рисунке наглядно представлена структура корневой панели JRootPane .

    Корневая панель JRootPane представляет собой контейнер, унаследованный от базового класса Swing JComponent. В этом контейнере за расположение компонентов отвечает специальный менеджер расположения, реализованный во внутреннем классе RootPaneLayout. Этот менеджер расположения отвечает за то, чтобы все составные части корневой панели размещались так, как им следует: многослойная панель занимает все пространство окна; в ее слое FRAME_CONTENT_LAYER располагаются строка меню и панель содержимого, а над всем этим располагется прозрачная панель.

    Все составляющие корневой панели JRootPane можно получить или изменить. Для этого у нее есть набор методов get/set. Программным способом JRootPane можно получить с использованием метода getRootPane().

    Кроме контейнеров высшего уровня корневая панель применяется во внутренних окнах JInternalFrame, создаваемых в многодокументных приложениях и располагающихся на «рабочем столе» JDesktopPane. Это позволяет забыть про то, что данные окна представляют собой обычные легковесные компоненты, и работать с ними как с настоящими контейнерами высшего уровня.

    Многослойная панель JLayeredPane

    В основании корневой панели (контейнера) лежит так называемая многослойная панель JLayeredPane , занимающая все доступное пространство контейнера. Именно в этой панели располагаются все остальные части корневой панели, в том числе и все компоненты пользовательского интерфейса.

    JLayeredPane используется для добавления в контейнер свойства глубины (depth). To есть, многослойная панель позволяет организовать в контейнере третье измерение, вдоль которого располагаются слои (layers) компонента. В обычном контейнере расположение компонента определяется прямоугольником, который показывает, какую часть контейнера занимает компонент. При добавлении компонента в многослойную панель необходимо указать не только прямоугольник, занимаемый компонентом, но и слой, в котором он будет располагаться. Слой в многослойной панели определяется целым числом. Чем больше определяющее слой число, тем выше слой находится.

    Первый добавленный в контейнер компонент оказывается выше компонентов, добавленных позже. Чаще всего разработчик не имеет дело с позициями компонентов. При добавлении компонентов их положение меняются автоматически. Тем не менее многослойная панель позволяет менять позиции компонентов динамически, уже после их добавления в контейнер.

    Возможности многослойной панели широко используются некоторыми компонентами Swing . Особенно они важны для многодокументных приложений, всплывающих подсказок и меню. Многодокументные Swing приложения задействуют специальный контейнер JDesktopPane («рабочий стол»), унаследованный от JLayeredPane , в котором располагаются внутренние окна Swing. Самые важные функции многодокументного приложения — расположение «активного» окна над другими, сворачивание окон, их перетаскивание — обеспечиваются механизмами многослойной панели. Основное преимущество от использования многослойной панели для всплывающих подсказок и меню — это ускорение их работы. Вместо создания для каждой подсказки или меню нового тяжеловесного окна, располагающегося над компонентом, в котором возник запрос на вывод подсказки или меню, Swing создает быстрый легковесный компонент. Этот компонент размещается в достаточно высоком слое многослойной панели выше в стопке всех остальных компонентов и используется для вывода подсказки или меню.

    Многослойная панель позволяет организовать неограниченное количество слоев. Структура JLayeredPane включает несколько стандартных слоев, которые и используются всеми компонентами Swing, что позволяет обеспечить правильную работу всех механизмов многослойной панели. Стандартные слои JLayeredPane представлены на следующем рисунке.

    Слой Default используется для размещения всех обычных компонентов, которые добавляются в контейнер. В этом слое располагаются внутренние окна многодокументных приложений.

    Слой Palette предназначен для размещения окон с набором инструментов, которые обычно перекрывают остальные элементы интерфейса. Создавать такие окна позволяет панель JDesktopPane, которая размещает их в этом слое.

    Слой Modal планировался для размещения легковесных модальных диалоговых окон. Однако такие диалоговые окна пока не реализованы, так что этот слой в Swing в настоящее время не используется.

    Наиболее часто используемый слой, служащий для размещения всплывающих меню и подсказок.

    Самый верхний слой. Предназначен для операций перетаскивания (drag and drop), которые должны быть хорошо видны в интерфейсе программы.

    Небольшой пример JLayeredPane с многослойной панелью показывает, как добавлять компоненты в различные слои и как слои располагаются друг над другом:

    Import javax.swing.*; import java.awt.*; // класс рисования двух типов фигур с текстом ); // определение местоположения фигур в окне figure1.setBounds(10, 40, 120, 120); figure2.setBounds(60, 120, 160, 180); figure3.setBounds(90, 55, 250, 180); // добавление фигур в различные слои lp.add(figure1, JLayeredPane.POPUP_LAYER); lp.add(figure2, JLayeredPane.PALETTE_LAYER); lp.add(figure3, JLayeredPane.PALETTE_LAYER); // смена позиции одной из фигур lp.setPosition(figure3, 0); // определение размера и открытие окна setSize(280, 250); setVisible(true); > public static void main(String args) < JFrame.setDefaultLookAndFeelDecorated(true); new JLayeredPaneTest(); >>

    В примере создается небольшое окно JFrame и в многослойную панель добавляется несколько компонентов Figure. Чтобы получить многослойную панель в любом контейнере Swing высшего уровня, достаточно вызвать метод getLayeredPane() .

    Вспомогательный класс Figure наследует свойства базового класса JComponent и позволяет различными цветами рисовать фигуры двух типов (круги и прямоугольники). Параметры для прорисовки фигур задаются в конструкторе класса.

    При определении интерфейса создаются три фигуры разного цвета (два круга и прямоугольник). Круг размещается в слое POPUP_LAYER, а прямоугольники — в слое PALETTE_LAYER. При размещении компонентов указываются их абсолютные экранные координаты, потому что в многослойной панели обычные менеджеры расположения не работают.

    В завершении позиция одного из прямоугольников меняется так, чтобы он был первым в слое, хотя изначально добавлялся вторым. Запустив приложение, вы увидите, что многослойная панель работает и аккуратно располагает компоненты согласно их слоям и позициям.

    В обычных приложениях многослойная панель редко используется напрямую, в них она выполняет свои функции незаметно. Тем не менее, иногда она помогает создать удивительные эффекты и необычные интерфейсы, позволяя, например, разместить поверх обычных компонентов анимацию или видео, не требуя для этого от разработчика нечеловеческих усилий и ухищрений.

    Панель содержимого ContentPane

    Панель содержимого ContentPane — это следующая часть корневой панели, которая используется для размещения компонентов пользовательского интерфейса программы. ContentPane занимает большую часть пространства многослойной панели (за исключением места, занимаемого строкой меню). Чтобы панель содержимого не закрывала добавляемые впоследствии в окно компоненты, многослойная панель размещает ее в специальном очень низком слое с названием FRAME_CONTENT_LAYER, с номером -30000.

    Обратиться к панели содержимого можно методом getContentPane() класса JFrame. С помощью метода add(Component component) можно добавить на нее любой элемент управления. Заменить ContentPane любой другой панелью типа JPanel можно методом setContentPane()

    Пример добавления кнопки в панель содержимого:

    JButton newButton = new JButton(); getContentPane().add(newButton);

    В результате получим окно с кнопкой. Кнопка занимает всю доступную площадь окна. Такой эффект полезен не во всех программах, поэтому необходимо использовать различные способы расположения элементов на панели.

    Панель содержимого можно полностью заменить. Рассмотрим следующий Swing пример использования панели содержимого ContentPane .

    Import javax.swing.*; public )); // Замена панели содержимого setContentPane(contents); // Определение размера окна setSize(200, 100); // Открытие окна setVisible(true); > public static void main(String args) < JFrame.setDefaultLookAndFeelDecorated(true); new ContentPaneAdd(); >>

    В примере создается небольшое окно и панель с двумя кнопками, которая затем методом setContentPane() заменяет панель содержимого окна. Таким образом была использована замена вместо более простого добавления — вызова метода add(). Интерфейс окна представлен на следующем скриншоте.

    Панель содержимого ContentPane сама собой не представляет ничего особенного. Необходимо лишь помнить, что компоненты добавляются именно в нее.

    Прозрачная панель JOptionPane

    Прозрачная панель JOptionPane размещается корневой панелью выше всех элементов многослойной панели. За размещением JOptionPane следит корневая панель, которая размещает прозрачную панель выше многослойной панели, причем так, чтобы она полностью закрывала всю область окна, включая и область, занятую строкой меню.

    JOptionPane используется в приложениях достаточно редко, поэтому по умолчанию корневая панель делает ее невидимой, что позволяет уменьшить нагрузку на систему рисования. Следует иметь в виду, что если вы делаете прозрачную панель видимой, нужно быть уверенным в том, что она прозрачна (ее свойство opaque равно false), поскольку в противном случае она закроет все остальные элементы корневой панели, и остальной интерфейс будет невидим.

    В каких случаях можно использовать прозрачную панель JOptionPane ? С ее помощью можно определять функции приложения, для реализации которых «с нуля» понадобились бы серьезные усилия. Прозрачную панель можно приспособить под автоматизированное тестирование пользовательского интерфейса. Синтезируемые в ней события позволяют отслеживать промежуточные отладочные результаты. Иногда такой подход гораздо эффективнее ручного тестирования.

    Прозрачная панель JOptionPane может быть использована для эффектной анимации, «плавающей» поверх всех компонентов, включая строку меню, или для перехвата событий, если некоторые из них необходимо обрабатывать перед отправкой в основную часть пользовательского интерфейса.

    Пример использования прозрачной панели Swing JOptionPane:

    // Использование прозрачной панели JOptionPane import java.awt.Dimension; import java.awt.Font; import java.awt.event.WindowEvent; import java.awt.event.WindowListener; import javax.swing.JDialog; import javax.swing.JFrame; import javax.swing.JLabel; import javax.swing.JOptionPane; import javax.swing.UIManager; public , FONT); JFrame.setDefaultLookAndFeelDecorated(true); JDialog.setDefaultLookAndFeelDecorated(true); createGUI(); > >); > >

    Если методу setDefaultCloseOperation передать константу JFrame.EXIT_ON_CLOSE , то при закрытии окна приложение будет прекращать работу. В примере этому методу передается константа JFrame.DO_NOTHING_ON_CLOSE , чтобы при закрытии окна ничего не происходило. Выход из приложения в примере осуществляется из JFrame слушателя WindowListener в методе windowClosing . При закрытии окна вызывается метод windowClosing с параметром WindowEvent event, который в прозрачной панели Swing JOptionPane открывает диалоговое окно подтверждения.

    На следующем скриншоте представлены два окна приложения. Верхнее главное окно. При закрытии данного окна открывается нижнее диалоговое окно подтверждения намерения.

    Строка меню JMenuBar

    Одной из важных особенностей использования корневой панели JRootPane в Swing, является необходимость размещения в окне строки меню JMenuBar . Серьезное приложение нельзя построить без какого-либо меню для получения доступа к функциям программы. Библиотека Swing предоставляет прекрасные возможности для создания удобных меню JMenuBar, которые также являются легковесными компонентами.

    Строка меню JMenuBar размещается в многослойной панели в специальном слое FRAME_CONTENT_LAYER и занимает небольшое пространство в верхней части окна. По размерам в длину строка меню равна размеру окна. Ширина строки меню зависит от содержащихся в ней компонентов.

    Корневая панель следит, чтобы панель содержимого и строка меню JMenuBar не перекрывались. Если строка меню не требуется, то корневая панель использует все пространство для размещения панели содержимого.

    Примеры Swing

    Исходные коды примеров, рассмотренных в тексте страницы, можно скачать .

    Библиотека Swing

    Современные программы нуждаются в графическом интерфейсе пользователя (GUI). Пользователи отвыкли работать через консоль: они управляют программой и вводят входные данные посредством так называемых элементов управления (в программировании их также называют визуальными компонентами), к которым относятся кнопки, текстовые поля, выпадающие списки и т.д.

    Каждый из современных языков программирования предоставляет множество библиотек для работы со стандартным набором элементов управления. Напомним, что под библиотекой в программировании набор готовых классов и интерфейсов, предназначенных для решения определенного круга задач.

    В Java есть три библиотеки визуальных компонентов для создания графического интерфейса пользователя. Самая ранняя из них называется AWT. Считается, что при ее проектировании был допущен ряд недочетов, вследствие которых с ней довольно сложно работать. Библиотека Swing разработана на базе AWT и заменяет большинство ее компонентов своими, спроектированными более тщательно и удобно. Третья, самая новая библиотека, называется SWT.

    Каждая библиотека предоставляет набор классов для работы с кнопками, списками, окнами, меню и т.д., но эти классы спроектированы по-разному: они имеют различный набор методов с разными параметрами, поэтому «перевести» программу с одной библиотеки на другую (например, с целью увеличения быстродействия) не так-то просто. Это почти как перейти с одного языка программирования на другой: все языки умеют делать одно и то же, но у каждого из них свой синтаксис, своя программная структура и свои многочисленные хитрости.

    По этой причине вместо того, чтобы делать обзор всех трех библиотек, мы постараемся получше разобраться в одной из них — библиотеке Swing. Полноценный графический интерфейс может быть разработан с ее помощью.

    Окно JFrame

    Каждая GUI-программа запускается в окне и по ходу работы может открывать несколько дополнительных окон.

    В библиотеке Swing описан класс JFrame , представляющий собой окно с рамкой и строкой заголовка (с кнопками «Свернуть», «Во весь экран» и «Закрыть»). Оно может изменять размеры и перемещаться по экрану.

    В Swing есть еще несколько классов окон. Например, JWindow — простейшее окно, без рамки и без строки заголовка. Обычно с его помощью делается заставка к программе, которая перед запуском должна выполнить несколько продолжительных действий (например, загрузить информацию из БД).

    Конструктор JFrame() без параметров создает пустое окно. Конструктор JFrame(String title) создает пустое окно с заголовком title .

    Чтобы написать простейшую программу, выводящую на экран пустое окно, нам потребуется еще три метода:

    setSize(int width, int height) — устанавливает размеры окна. Если не задать размеры, окно будет иметь нулевую высоту независимо от того, что в нем находится и пользователю после запуска придется растягивать окно вручную. Размеры окна включают не только «рабочую» область, но и границы и строку заголовка.

    setDefaultCloseOperation(int operation) — позволяет указать действие, которое необходимо выполнить, когда пользователь закрывает окно нажатием на крестик. Обычно в программе есть одно или несколько окон при закрытии которых программа прекращает работу. Для того, чтобы запрограммировать это поведение, следует в качестве параметра operation передать константу EXIT_ON_CLOSE , описанную в классе JFrame .

    setVisible(boolean visible) — когда окно создается, оно по умолчанию невидимо. Чтобы отобразить окно на экране, вызывается данный метод с параметром true . Если вызвать его с параметром false , окно снова станет невидимым.

    Теперь мы можем написать программу, которая создает окно, выводит его на экран и завершает работу после того, как пользователь закрывает окно.

    import javax.swing.*; public ); myWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); myWindow.setSize(400, 300); myWindow.setVisible(true ); > >

    Обратите внимание, для работы с большинством классов библиотеки Swing понадобится импортировать пакет java.swing.*

    Как правило, перед отображением окна, необходимо совершить гораздо больше действий, чем в этой простой программке. Необходимо создать множество элементов управления, настроить их внешний вид, разместить в нужных местах окна. Кроме того, в программе может быть много окон и настраивать их все в методе main() неудобно и неправильно, поскольку нарушает принцип инкапсуляции: держать вместе данные и команды, которые их обрабатывают. Логичнее было бы, чтобы каждое окно занималось своими размерами и содержимым самостоятельно. Поэтому классическая структура программы с окнами выглядит следующим образом:

    В файле SimpleWindow.java:

    В файле Program.java:

    public >Из примера видно, что окно описывается в отдельном классе, являющемся наследником JFrame и настраивающее свой внешний вид и поведение в конструкторе (первой командой вызывается конструктор суперкласса). Метод main() содержится в другом классе, ответственном за управление ходом программы. Каждый из этих классов очень прост, каждый занимается своим делом, поэтому в них легко разбираться и легко сопровождать (т.е. совершенствовать при необходимости).

    Обратите внимание, что метод setVisible() не вызывается в классе SimpleWindow , что вполне логично: за тем, где какая кнопка расположена и какие размеры оно должно иметь, следит само окно, а вот принимать решение о том, какое окно в какой момент выводится на экран — прерогатива управляющего класса программы.

    Панель содержимого

    Напрямую в окне элементы управления не размещаются. Для этого служит панель содержимого, занимающая все пространство окна* . Обратиться к этой панели можно методом getContentPane() класса JFrame . С помощью метода add(Component component) можно добавить на нее любой элемент управления.

    В примерах этого занятия мы будем использовать только один элемент управления — кнопку (не вдаваясь в подробности ее устройства). Кнопка описывается классом JButton и создается конструктором с параметром типа String — надписью.

    Добавим кнопку в панель содержимого нашего окна командами:

    JButton newButton = new JButton(); getContentPane().add(newButton);

    В результате получим окно с кнопкой. Кнопка занимает всю доступную площадь окна. Такой эффект полезен не во всех программах, поэтому необходимо изучить различные способы расположения элементов на панели.

    Класс Container (контейнер)

    Элементы, которые содержат другие элементы, называются контейнерами. Все они являются потомками класса Container и наследуют от него ряд полезных методов:

    add(Component component) — добавляет в контейнер элемент component ;

    remove(Component component) — удаляет из контейнера элемент component ;

    removeAll() — удаляет все элементы контейнера;

    getComponentCount() — возвращает число элементов контейнера.

    Кроме перечисленных в классе Container определено около двух десятков методов для управления набором компонентов, содержащихся в контейнере. Как видно, они похожи на методы класса-коллекции. Это неудивительно, ведь по сути контейнер и является коллекцией, но коллекцией особого рода — визуальной. Кроме хранения элементов контейнер занимается их пространственным расположением и прорисовкой. В частности, он имеет метод getComponentAt(int x, int y) , возвращающий компонент, в который попадает точка с заданными координатами (координаты отсчитываются от левого верхнего угла компонента) и ряд других. Мы не будем подробно рассматривать абстрактный контейнер, а сразу перейдем к его наиболее часто используемому потомку — классу JPanel .

    Класс JPanel (панель)

    Панель JPanel — это элемент управления, представляющий собой прямоугольное пространство, на котором можно размещать другие элементы. Элементы добавляются и удаляются методами, унаследованными от класса Container .

    В примере с кнопкой мы наблюдали, как добавленная на панель содержимого кнопка заняла все ее пространство. Это происходит не всегда. На самом деле у каждой панели есть так называемый менеджер размещения , который определяет стратегию взаимного расположения элементов, добавляемых на панель. Его можно изменить методом setLayout(LayoutManager manager) . Но чтобы передать в этот метод нужный параметр, необходимо знать, какими бывают менеджеры.

    Менеджер последовательного размещения FlowLayout

    Самый простой менеджер размещения — FlowLayout . Он размещает добавляемые на панель компоненты строго по очереди, строка за строкой, в зависимости от размеров панели. Как только очередной элемент не помещается в текущей строке, он переносится на следующую. Лучше всего пронаблюдать это на примере. Изменим конструктор класса SimpleWindow следующим образом:

    Менеджеры расположения описаны в пакете java.awt. Не забывайте импортировать нужные классы.

    Пронаблюдайте за поведением окна, появляющегося после запуска программы. Четыре кнопки в нем расположены как слова в текстовом редакторе (при выравнивании по центру). Эффект будет лучше заметен, если изменять размеры окна во время работы программы.

    Проанализируем текст примера. Новый менеджер расположения FlowLayout создается конструктором без параметров. Обратите внимание, в программе не используется промежуточная переменная. То есть вместо двух команд:

    FlowLayout newLayout = new FlowLayout(); panel.setLayout(newLayout);

    Мы используем одну:

    Это вполне допустимо в тех случаях, когда в дальнейшем нам не потребуется обращаться к создаваемому объекту (что справедливо для данного примера). Мы создаем менеджер расположения, тут же привязываем его к панели — и все. Теперь панель и менеджер сами найдут друг с другом общий язык.

    о взаимоотношениях панели и ее менеджера

    Панель хранит ссылку на своего менеджера и сама обращается к нему каждый раз, когда нужно рассчитать координаты элементов (это происходит при их добавлении, удалении, изменении размеров, а также при изменении размеров окна). В принципе, мы можем даже получить этого менеджера методом getLayout() класса JPanel , но, как правило, в этом вообще нет необходимости.

    Кстати, класс JPanel кроме конструктора без параметров, имеет конструктор, в котором в качестве параметра задается менеджер расположения. Поэтому вместо команд

    JPanel panel = new JPanel(); panel.setLayout(new FlowLayout());

    JPanel panel = new JPanel(new FlowLayout());

    Более того, по умолчанию вновь создаваемая панель имеет именно менеджер расположения FlowLayout . Поэтому в приведенном выше примере мы устанаваем менеджера скорее для наглядности, вообще же, делать это не обязательно.

    Точно также мы добавляем на панель новые кнопки. Мы нигде больше не пытаемся обратиться к этим кнопкам в программе, поэтому заводить под них переменные нет смысла.

    Метод setContentPane(JPanel panel) позволяет заменить панель содержимого окна.

    Менеджер граничного размещения BorderLayout

    Менеджер размещения BorderLayout разделяет панель на пять областей: центральную, верхнюю, нижнюю, правую и левую. В каждую из этих областей можно добавить ровно по одному компоненту, причем компонент будет занимать всю отведенную для него область. Компоненты, добавленные в верхнюю и нижнюю области, будут растянуты по ширине, добавленные в правую и левую — по высоте, а компонент, добавленный в центр, будет растянут так, чтобы полностью заполнить оставшееся пространство панели.

    При добавлении элемента на панель с менеджером размещения BorderLayout , необходимо дополнительно указывать в методе add() , какая из областей имеется в виду. Для этого служат строки с названиями сторон света: «North» , «South» , «East» , «West» и «Center» . Но вместо них рекомендуется использовать константы, определенные в классе BorderLayout: NORTH , SOUTH , EAST , WEST и CENTER (поскольку в строке можно допустить ошибку и не заметить этого, а при попытке написать неправильно имя константы компилятор выдаст предупреждение). Если же использовать метод add() как обычно, с одним параметром, элемент будет добавлен в центр.

    Панель содержимого имеет именно такое расположение, именно поэтому кнопка и занимала все окно целиком (она была добавлена в центральную область). Чтобы пронаблюдать эффект BorderLayout , добавим кнопки во все пять областей:

    Эффект будет хорошо наблюдаться, если изменять размеры окна.

    Данное размещение не случайно используется в панели содержимого по умолчанию. Большинство программ пользуются областями по краям окна, чтобы расположить в них панели инструментов, строку состояния и т.п. А ограничение на один компонент в центральной области абсолютно не существенно, ведь этим компонентом может быть другая панель со множеством элементов и с любым менеджером расположения.

    Менеджер табличного размещения GridLayout

    GridLayout разбивает панель на ячейки одинаковой ширины и высоты (таким образом окно становится похожим на таблицу). Каждый элемент, добавляемый на панель с таким расположением, целиком занимает одну ячейку. Ячейки заполняются элементами по очереди, начиная с левой верхней.

    Этот менеджер, в отличие от рассмотренных ранее, создается конструктором с параметрами (четыре целых числа). Необходимо указать количество столбцов, строк и расстояние между ячейками по горизонтали и по вертикали. Выполните следующий пример и пронаблюдайте эффект.

    Менеджер блочного размещения BoxLayout и класс Box

    Менеджер BoxLayout размещает элементы на панели в строку или в столбец.

    Обычно для работы с этим менеджером используют вспомогательный класс Box , представляющий собой панель, для которой уже настроено блочное размещение. Создается такая панель не конструктором, а одним из двух статических методов, определенных в классе Box: createHorizontalBox() и createVerticalBox() .

    Элементы, добавленные на панель с блочным размещением, выстраиваются один за другим. Расстояние между элементами по умолчанию нулевое. Однако вместо компонента можно добавить невидимую «распорку», единственная задача которой — раздвигать соседние элементы, обеспечивая между ними заданное расстояние. Горизонтальная распорка создается статическим методом createHorizontalStrut(int width) , а вертикальная — методом createVerticalStrut(int height) . Оба метода определены в классе Box , а целочисленный параметр в каждом из них определяет размер распорки.

    Кроме того, на такую панель можно добавить еще один специальный элемент — своеобразную «пружину». Если размер панели будет больше, чем необходимо для оптимального размещения всех элементов, те из них, которые способны растягиваться, будут стараться заполнить дополнительное пространство собой. Если же разместить среди элементов одну или несколько «пружин», дополнительное свободное пространство будет распределяться и в эти промежутки между элементами. Горизонтальная и вертикальная пружины создаются соответственно методами createHorizontalGlue() и createVerticalGlue() .

    Понять особенности работы этого менеджера лучше на наглядном примере. Мы расположим четыре кнопки вертикально, поставив между двумя центральными «пружину», а между остальными — распорки в 10 пикселов.

    Особенности выравнивания элементов

    В примере с вертикальной панелью все кнопки оказались выровнены по левому краю. Такое выравнивание по горизонтали принято по умолчанию.

    Однако при разработке окна программы может понадобиться, чтобы какие-то элементы были выровнены иначе, например, по правому краю или по центру. Для того, чтобы установить выравнивание любого визуального компонента (например, кнопки или панели), используются методы setAlignmentX(float alignment) — выравнивание по горизонтали и setAlignmentY(float alignment) — выравнивание по вертикали. В качестве параметра проще всего использовать константы, определенные в классе JComponent . Для выравнивания по горизонтали служат константы LEFT_ALIGNMENT (по левому краю), RIGHT_ALIGNMENT (по правому краю) и CENTER_ALIGNMENT (по центру). Для выравнивания по вертикали — BOTTOM_ALIGNMENT (по нижнему краю), TOP_ALIGNMENT (по верхнему краю) и CENTER_ALIGNMENT (по центру).

    Однако выравнивание работает несколько иначе, чем ожидается. Чтобы это обнаружить, изменим предыдущий пример, выровняв третью кнопку по правому краю. Для этого заменим строку:

    JButton rightButton = new JButton(«-» ); rightButton.setAlignmentX(JComponent.RIGHT_ALIGNMENT); box.add(rightButton);

    Нам пришлось ввести переменную для обращения к этой кнопке, поскольку теперь нам нужно выполнить с ней не одно, а два действия: установка выравнивания по правому краю и добавление в панель. Прежний прием — одновременное создание кнопки и передача ее в качестве параметра в метод — здесь не сработает.

    После запуска программы мы увидим окно, в котором кнопки расположены не так, как, наверное, ожидалось. Мы привыкли, что выравнивание по правому краю прижимает объект к правому краю контейнера, но в данном случае перестроились все элементы, причем кнопка с выравниванием по правому краю оказалась самой левой.

    Объяснение просто. При выравнивании по правому краю объект не прижимается к правому краю компонента. Вместо этого он прижимается правым краем к невидимой линии выравнивания. Все остальные компоненты прижимаются к этой линии своим левым краем, поэтому и получается наблюдаемый эффект.

    Единственная трудность для начинающего разработчика может оказаться в том, что не всегда легко понять, где именно пройдет эта линия. Ее положение зависит от размеров и выравнивания всех элементов контейнера. Однако легко запомнить простое правило: если все элементы в контейнере выровнены одинаково, мы получим привычное поведение (как это и было в предыдущем примере, когда все компоненты были выровнены влево и линия в результате прижалась к левому краю панели.

    о выравнивании элементов

    Параметр выравнивания на самом деле представляет собой вещественное число в диапазоне от 0 до 1. Он показывает, какая часть компонента окажется слева от линии выравнивания, т.е. в каких пропорциях компонент будет «разрезан». Константы LEFT_ALIGNMENT и TOP_ALIGNMENT на самом деле равны 0, RIGHT_ALIGNMENT и BOTTOM_ALIGNMENT равны 1, а CENTER_ALIGHNMENT — 0.5. Можно подставлять эти числа напрямую (хотя использование констант значительно повышает наглядность!), а можно выбрать любое другое число от 0 до 1 и настроить совершенно произвольное выравнивание.

    Попробуйте поэкспериментировать с вертикальной панелью, задавая различное выравнивание для ее элементов, чтобы интуитивно понять логику размещения линии выравнивания. Изменяйте размеры окна во время работы программы, чтобы увидеть как меняется положение этой линии.

    Ручное размещение элементов

    Если в качестве менеджера размещения панели установить null , элементы не будут расставляться автоматически. Координаты каждого элемента необходимо в этом случае указать явно, при этом они никак не зависят от размеров панели и от координат других элементов. По умолчанию координаты равны нулю (т.е. элемент расположен в левом верхнем углу панели). Размер элемента также необходимо задавать явно (в противном случае его ширина и высота будут равны нулю и элемент отображаться не будет).

    Координаты элемента можно задать одним из следующих методов:

    setLocation(int x, int y) ,

    Эти методы работают аналогично, устанавливая левый верхний угол элемента в точку с заданными координатами. Разница в способе задания точки. Можно представить точку двумя целыми числами, а можно объектом класса Point . Класс Point по сути представляет собой ту же пару чисел, его конструктор имеет вид Point(int x, int y) . Получить доступ к отдельной координате можно методами getX() и getY() .

    Можно задаться вопросом: зачем использовать класс Point , если можно просто передать пару чисел? Но дело в том, что многие полезные методы возвращают результат — координаты некоторой точки — в виде объекта этого класса. Например, метод getLocation() , возвращающий координаты элемента. Предположим, нам нужно поместить элемент b в точности в то место, которое занимает элемент a . Этого легко добиться одной строкой:

    Размер элемента задается одним из двух методов:

    setSize(int width, int height) ,

    Эти методы работают одинаково — разница, как и в прошлый раз, в способе передачи параметра. Класс Dimension , аналогично классу Point , просто хранит два числа, имеет конструктор с двумя параметрами: Dimension(int width, int height) и позволяет получить доступ к своим составляющим — ширине и высоте — с помощью простых методов getWidth() и getHeigth() . Для того, чтобы получить текущий размер элемента, можно воспользоваться методом getSize() , возвращающего объект класса Dimension . Элемент b можно сделать точно такого же размера, как элемент a , выполнив команду:

    Создадим панель, с которой не будет связано никакого менеджера размещения и вручную разместим на ней две кнопки:

    Мы используем одну и ту же переменную button для обращения к обеим кнопкам (причем, второй раз ее описывать не нужно). В самом деле, осуществив все необходимые операции с первой кнопкой и зная, что обращаться к ней нам больше не понадобится, мы используем «освободившуюся» переменную для манипуляций со второй.

    Автоматическое определение размеров компонентов

    Если у панели есть любой менеджер размещения, она игнорирует явно заданные размеры и координаты всех своих элементов. В этом легко убедиться, заменив в предыдущем примере команду panel.setLayout(null ) на panel.setLayout(new FlowLayout()) . Менеджер размещения сам определяет координаты и размеры всех элементов.

    Способ определения координат элементов очевидным образом вытекает из алгоритмов работы каждого менеджера и, таким образом, детально рассмотрен нами выше.

    Мы также отмечали, что в некоторых случаях компоненты стараются заполнить все доступное им пространство. Например, всю центральную область в случае менеджера BorderLayout или всю ячейку в менеджере GridLayout . А в панели с менеджером FlowLayout , напротив, элементы никогда не пытаются выйти за определенные границы. Рассмотрим, что это за границы.

    Каждый визуальный компонент имеет три типа размеров: минимально допустимый, максимально допустимый и предпочтительный. Узнать, чему равны эти размеры для данного компонента можно с помощью соответствующих методов:

    Методы возвращают результат типа Dimension . Они запрограммированы в соответствующем классе. Например, у кнопки минимальный размер — нулевой, максимальный размер не ограничен, а предпочтительный зависит от надписи на кнопке (вычисляется как размер текста надписи плюс размеры полей).

    Менеджер FlowLayout всегда устанавливает предпочтительные размеры элементов. Менеджер BorderLayout устанавливает предпочтительную ширину правого и левого, а также предпочтительную высоту верхнего и нижнего. Остальные размеры подгоняются под доступное пространство панели. Менеджер GridLayout пытается подогнать размеры всех элементов под размер ячеек. Менеджер BoxLayout ориентируется на предпочтительные размеры.

    Когда элемент старается занять все доступное ему пространство, он «учитывает» пожелания не делаться меньше своих минимальных или больше максимальных.

    Всеми тремя размерами можно управлять с помощью соответствующим методов set:

    Чаще всего используется простой прием, когда элементу «не рекомендуется» увеличиваться или уменьшаться относительно своих предпочтительных размеров. Это легко сделать командой:

    «Упаковка» окна

    В рассмотренных выше примерах мы явно задавали размер окна методом setSize() . Но когда используется какой-либо менеджер расположения, расставляющий элементы и изменяющий их размеры по собственным правилам, трудно сказать заранее, какие размеры окна будут самыми подходящими.

    Безусловно, наиболее подходящим будет вариант, при котором все элементы окна имеют предпочтительные размеры или близкие к ним* .

    Если вместо явного указания размеров окна, вызвать метод pack() , они будут подобраны оптимальным образом с учетом предпочтений всех элементов, размещенных в этом окне.

    Заметьте, что когда панель не имеет метода размещения, эта команда не работает (поскольку панель не имеет алгоритма для вычисления своего предпочтительного размера).

    Упражнение

    Как уже отмечалось, элементом панели может быть другая панель. Создайте панель с тремя кнопками и менеджером размещения FlowLayout и панель с двумя кнопками и менеджером размещения BoxLayout (горизонтальным). Разместите обе панели в главном окне (не изменяя менеджера размещения у панели содержимого): одну в центр, а другую вдоль любой стороны окна.

    Рамки

    Когда панели служат не просто для размещения элементов в соответствии с алгоритмом некоторого менеджера, а для визуального отделения их друг от друга, они оформляются с помощью рамок.

    Рамка панели устанавливается методом setBorder(Border border) . Параметром метода выступает рамка — объект класса Border . Это абстрактный класс, поэтому для создания рамки используются его наследники:

    EmptyBorder — пустая рамка, позволяет создать отступы вокруг панели. Размеры отступов задаются в конструкторе четырьмя целыми числами.

    TitledBorder — рамка с заголовком. Простейший конструктор имеет один параметр типа String (текст заголовка). Заголовок может размещаться вдоль любой стороны рамки, иметь различные начертания.

    EtchedBorder — рамка с тиснением. Может быть вогнутой или выпуклой.

    BevelBorder — объемная рамка (выпуклая или вогнутая). Можно настроить цвета, требуемые для получения объемных эффектов.

    SoftBevelBorder — то же самое, что BevelBorder, но позволяет дополнительно скруглить углы.

    LineBorder — простая рамка, нарисованная сплошной линией. Можно выбирать цвет и толщину линии, скруглить углы.

    MatteBorder — рамка из повторяющегося рисунка.

    CompoundBorder — объединяет две рамки, передаваемые в качестве параметров конструктору в одну новую рамку.

    Все перечисленные классы описаны в пакете javax.swing.border.

    Рассмотрим пример. В этом примере мы создадим шесть панелей с различными рамками и разместим их в виде таблицы. Чтобы не описывать шесть раз процедуру создания новой панели, вынесем ее в отдельный метод:

    Private JPanel createPanel(Border border, String text)

    Метод createPanel() создает панель с кнопкой во весь свой размер. В качестве параметра передается надпись на кнопке и рамка, которую необходимо добавить к панели. Рамка добавляется не напрямую, а путем композиции с пустой рамкой. Этот прием часто используется, чтобы рамка не прилипала к краю панели.

    Теперь шесть раз воспользуемся этим методом в конструкторе окна программы.

    Этот пример показывает, с помощью каких конструкторов создаются различные рамки и как они выглядят. В нем использованы два новых класса: Color и ImageIcon .

    Класс Color предназначен для работы с цветом. В нем есть несколько констант, описывающих наиболее распространенные цвета. В частности, к таковым относится Color.ORANGE .

    Класс ImageIcon описывает графическое изображение. Параметр его конструктора — это путь к файлу, из которого изображение может быть загружено. В примере используется относительное имя файла «1.gif». Чтобы объект ImageIcon был успешно создан, файл с таким именем должен быть помещен в папку проекта.

    Одно из важных достоинств Java состоит в том, что это не только язык, но и стандартизованная объектно-ориентированная среда выполнения. Любопытно проследить, как в рамках Java решаются традиционные программистские проблемы. Мы остановимся на оконном графическом интерфейсе.

    Вместе с различными приятными (главным образом для пользователя) свойствами, оконный интерфейс привносит и довольно неприятные (для разработчика) проблемы. Одна из них — это переносимость приложений между разными платформами. Переносимость является проблемой и без графического интерфейса, однако наличие такового делает ее многократно сложнее.

    Дело в том, что каждая оконная среда — это сложный мир, со своими законами, набором строительных блоков и приемов программирования. Motif не похож на MS-Windows и оконную систему Macintosh. По-разному представляются примитивные элементы интерфейса, по-разному обрабатываются внешние события, по-разному происжодит рисование на экране и т.д.

    Вместе с тем, по своей сути оконная среда — просто идеальное поле деятельности для объектного программирования. Даже человеку, неискушенному в объектно-ориентированных методах проектирования, ясно, что такие вещи, как кнопки, текстовые поля, меню, вполне заслуживают названия объектов, как бы это слово ни понималось. Иначе говоря, вполне понятно, что такое “кнопка вообще”, “список вообще” и т.д.

    Все это дает основания надеяться, что с помощью объектно-ориентированного подхода можно получить по-настоящему высокоуровневую и переносимую оконную среду, основанную на абстрактных типах данных.

    Данная особенность оконных сред проявилась, в частности, в появлении довольно большого количества различных классовых библиотек, “обертывающих” оригинальные оконные системы. В качестве примеров можно привести MFC, OWL, Zink и многие другие.

    Вот и среди стандартных Java-библиотек присутствует AWT или Abstract Windowing Toolkit — абстрактный оконный инструментарий.

    AWT является системой классов для поддержки программирования в оконной среде. Его “абстрактность” проявляется в том, что все, зависящее от конкретной платформы, хорошо локализовано и спрятано. В AWT реализованы такие простые и понятные вещи, как кнопки, меню, поля ввода; простые и понятные средства организации интерфейса — контейнеры, панели, менеджеры геометрии.

    Основы построения графического пользовательского интерфейса Компоненты и контейнеры

    Если посмотреть на любое оконное приложение, то легко увидеть, что интерфейсная часть состоит из объектов, объединенных в группы. В AWT объекты называются компонентами (на самом деле они все являются наследниками класса Component), а группы объектов реализованы с помощью так называемых контейнеров. Отметим, что любой контейнер — это тоже компонента, поэтому группы объектов могут быть вложены друг в друга. Как обычно, меню стоят особняком.

    К числу примитивных компонент относятся:

    Взаимодействие интерфейсных компонент с пользователем реализовано с помощью аппарата событий, о котором будет рассказано ниже.

    Как начать пользоваться Swing GUI-визардом IntelliJ IDEA. Подробная инструкция

    Давно не писал настольных приложений на Java вообще и с использовании Swing в частности. Однако, возникла необходимость немного по GUIть. В качестве инструмента выбрал IntelliJ IDEA Community edition, 2020.1 версии.

    Взялся ваять и, естественно, первое, на что налетел — хотя со времён Borland Java Builder 2006 воды утекло немало, экранные интерфейсы создавать проще не стало, скорее наоборот. А одной из причин выбора IDEA было как раз наличие Swing дизайнера «из коробки», однако как им пользоваться с ходу решительно непонятно — форма генерится, класс создаётся, создаются переменные контролов из дизайнера… но и только: при создании нашего класса форма на экране не появляется

    Пошарил интернет, информации приблизительно ноль. Народ говорит, мол, «создавай и — вперёд!». Хм…

    По результатам небольших мытарств на эту тему решил опубликовать инструкцию, так как мне с учётом былого опыта было искать намного легче, чем новичку, который вообще в первый раз ваяет форму на Swing.


    Создание Swing GUI форм средствами JetBrains IntelliJ IDEA 2020.1

    Во-первых, для понимания процесса лучше начать с того. что зайти в меню IDEA «File -> Settings» — там «Editor -> GUI Designer» и установить флажок Generate GUI Into: в Java source code. (это немного поможет пониманию процесса на первом этапе — потом можно будет убрать обратно).

    Далее открываем дерево исходного кода своего проекта и кликаем правой кнопкой мыши на любую папку или файл исходного кода java и выбираем «New -> Dialog» — вводим имя класса для формы.

    В итоге нам действительно сгенерили класс-наследник JDialog (который можно создать и использовать) и форма к нему.
    Запускаем наш проект на выполнение и… о ужасчудо! при компиляции IDEA добавляет в конец нашего файла некоторый дополнительный код.

    Несложно догадаться, что вся наша Swing-овая форма конфигурируется в автогенерируемом методе $$$setupUI$$$.

    Вспомните настройку, которую мы установили в самом начале — «GUI Into: -> Java source code». Если её не ставить, то этот метод просто будет появляться напрямую в _class_ файле, минуя java-файл (декомпилируйте его, если сомневаетесь — я это сделал). Соответственно, можете вернуть настройку «GUI Into:» к первоначальному виду, чтобы этот код (который всё равно редактировать настоятельно не рекомендуют) не мозолил глаза.

    Теперь, когда мы поняли, как оно работает, перейдём к созданию прочих форм — необязательно диалогов.

    Опять правой кнопкой мыши кликаем на папку или файл исходного кода, выбираем «New -> GUI Form» — вводим имя класса для формы.

    Генерится класс и форма к нему. Накидываем на форму несколько контролов. В GUI дизайнере смотрим имя корневого элемента (обычно panel1, если IDEA не задала имя, а такое бывает, задайте принудительно — я для наглядности назвал rootPanel).

    Переходим к исходному коду нашего класса.

    Итак:
    1. Добавляем для нашего класса наследование «extends JFrame»;
    2. Добавляем конструктор класса со строками:

    Всё. Форма готова к употреблению. Остальное смотрите в многочисленных инструкциях по Swing.

    P.S. Как вариант, можно не наследовать наш класс от JFrame, а создать конструктор вида:

    Такой вариант тоже работает — возможно, кому-то пригодится.

    GUI на Java

    Пользовательский интерфейс на Java прошел весьма тернистый путь становления и развития. Долгое время его обвиняли в медленной работе, жадности к ресурсам системы, ограниченной функциональности. Появление .NET с более быстрыми графическими компонентами еще больше пошатнуло позиции Java. Но нет худа без добра — все эта движуха только подстегивала разработчиков Java к развитию и улучшению графических библиотек. Посмотрим, что из этого получилось.

    Abstract Window Toolkit

    Хакер #183. Малварь для Android

    AWT была первой попыткой Sun создать графический интерфейс для Java. Они пошли легким путем и просто сделали прослойку на Java, которая вызывает методы из библиотек, написанных на С. Библиотечные методы создают и используют графические компоненты операционной среды. С одной стороны, это хорошо, так как программа на Java похожа на остальные программы в рамках данной ОС. Но с другой стороны, нет никакой гарантии, что различия в размерах компонентов и шрифтах не испортят внешний вид программы при запуске ее на другой платформе. Кроме того, чтобы обеспечить мультиплатформенность, пришлось унифицировать интерфейсы вызовов компонентов, из-за чего их функциональность получилась немного урезанной. Да и набор компонентов получился довольно небольшой. К примеру, в AWT нет таблиц, а в кнопках не поддерживается отображение иконок.

    Использованные ресурсы AWT старается освобождать автоматически. Это немного усложняет архитектуру и влияет на производительность. Освоить AWT довольно просто, но написать что-то сложное будет несколько затруднительно. Сейчас ее используют разве что для апплетов.

    Достоинства:

    • часть JDK;
    • скорость работы;
    • графические компоненты похожи на стандартные.

    Недостатки:

    • использование нативных компонентов налагает ограничения на использование их свойств. Некоторые компоненты могут вообще не работать на «неродных» платформах;
    • некоторые свойства, такие как иконки и всплывающие подсказки, в AWT вообще отсутствуют;
    • стандартных компонентов AWT очень немного, программисту приходится реализовывать много кастомных;
    • программа выглядит по-разному на разных платформах (может быть кривоватой).

    заключение:

    В настоящее время AWT используется крайне редко — в основном в старых проектах и апплетах. Oracle припрятал обучалки и всячески поощряет переход на Swing. Оно и понятно, прямой доступ к компонентам оси может стать серьезной дырой в безопасности.

    Swing

    Как выглядит Swing

    Вслед за AWT Sun разработала набор графических компонентов под названием Swing. Компоненты Swing полностью написаны на Java. Для отрисовки используется 2D, что принесло с собой сразу несколько преимуществ. Набор стандартных компонентов значительно превосходит AWT по разнообразию и функциональности. Стало легко создавать новые компоненты, наследуясь от существующих и рисуя все, что душе угодно. Стала возможной поддержка различных стилей и скинов. Вместе с тем скорость работы первых версий Swing оставляла желать лучшего. Некорректно написанная программа и вовсе могла повесить винду намертво.

    Тем не менее благодаря простоте использования, богатой документации и гибкости компонентов Swing стал, пожалуй, самым популярным графическим фреймворком в Java. На его базе появилось много расширений, таких как SwingX, JGoodies, которые значительно упрощают создание сложных пользовательских интерфейсов. Практически все популярные среды программирования Java включают графические редакторы для Swing-форм. Поэтому разобраться и начать использовать Swing не составит особого труда.

    Достоинства:

    • часть JDK, не нужно ставить дополнительных библиотек;
    • по Swing гораздо больше книжек и ответов на форумах. Все проблемы, особенно у начинающих, гуглу досконально известны;
    • встроенный редактор форм почти во всех средах разработки;
    • на базе свинга есть много расширений типа SwingX;
    • поддержка различных стилей (Look and feel).

    Недостатки:

    • окно с множеством компонентов начинает подтормаживать;
    • работа с менеджерами компоновки может стать настоящим кошмаром в сложных интерфейсах.

    Заключение:

    Swing жил, Swing жив, Swing будет жить. Хотя Oracle и старается продвигать JavaFX, на сегодняшний день Swing остается самым популярным фреймворком для создания пользовательских интерфейсов на Java.

    Standard Widget Toolkit

    SWT был разработан в компании IBM в те времена, когда Swing еще был медленным, и сделано это было в основном для продвижения среды программирования Eclipse. SWT, как и AWT, использует компоненты операционной системы, но для каждой платформы у него созданы свои интерфейсы взаимодействия. Так что для каждой новой системы тебе придется поставлять отдельную JAR-библиотеку с подходящей версией SWT. Это позволило более полно использовать существующие функции компонентов на каждой оси. Недостающие функции и компоненты были реализованы с помощью 2D, как в Swing. У SWT есть много приверженцев, но, положа руку на сердце, нельзя не согласиться, что получилось не так все просто, как хотелось бы. Новичку придется затратить на изучение SWT намного больше времени, чем на знакомство с тем же Swing. Кроме того, SWT возлагает задачу освобождения ресурсов на программиста, в связи с чем ему нужно быть особенно внимательным при написании кода, чтобы случайное исключение не привело к утечкам памяти.

    Достоинства:

    • использует компоненты операционной системы — скорость выше;
    • Eclipse предоставляет визуальный редактор форм;
    • обширная документация и множество примеров;
    • возможно использование AWT- и Swing-компонентов.

    Недостатки:

    • для каждой платформы необходимо поставлять отдельную библиотеку;
    • нужно все время следить за использованием ресурсов и вовремя их освобождать;
    • сложная архитектура, навевающая суицидальные мысли после тщетных попыток реализовать кастомный интерфейс.

    Заключение:

    Видно, что в IBM старались. Но получилось уж очень на любителя…

    JavaFX

    Как выглядит JavaFX

    JavaFX можно без преувеличения назвать прорывом. Для отрисовки используется графический конвейер, что значительно ускоряет работу приложения. Набор встроенных компонентов обширен, есть даже отдельные компоненты для отрисовки графиков. Реализована поддержка мультимедийного контента, множества эффектов отображения, анимации и даже мультитач. Внешний вид всех компонентов можно легко изменить с помощью CSS-стилей. И самое прекрасное — в JavaFX входит набор утилит, которые позволяют сделать родной инсталлятор для самых популярных платформ: exe или msi для Windows, deb или rpm для Linux, dmg для Mac. На сайте Oracle можно найти подробную документацию и огромное количество готовых примеров. Это превращает программирование с JavaFX в легкое и приятное занятие.

    Достоинства:

    • быстрая работа за счет графического конвейера;
    • множество различных компонентов;
    • поддержка стилей;
    • утилиты для создания установщика программы;
    • приложение можно запускать как десктопное и в браузере как часть страницы.

    Недостатки:

    • фреймворк еще разрабатывается, поэтому случаются и падения и некоторые глюки;
    • JavaFX пока не получил широкого распространения.

    Заключение:

    Хорошая работа, Oracle. Фреймворк оставляет только позитивные впечатления. Разобраться несложно, методы и интерфейсы выглядят логичными. Хочется пользоваться снова и снова!

    Визуальные библиотеки на практике

    SWT: погодный виджет

    Для демонстрации возможностей наиболее популярных графических библиотек и основных принципов работы с ними сделаем несколько небольших виджетов с отображением различной информации.

    И начнем, пожалуй, с самого популярного виджета — отображения текущей погоды, для реализации которого выберем SWT.

    Любая программа на SWT начинается с создания объекта Display. Он служит своеобразным контекстом приложения, который содержит необходимые методы для обращения к ресурсам системы и обеспечивает цикл событий. Следующим шагом будет создание не менее важного объекта Shell. Shell представляет собой обычное окно операционной системы. В конструктор shell передается Display, чтобы создать окно верхнего уровня.

    Так как мы создаем виджет, нам не нужно отображать стандартное обрамление окна и кнопки управления, для этого мы указали флаг NO_TRIM. Для фона мы будем использовать картинку — прямоугольник с закругленными углами. В принципе, окно SWT может принимать любые формы. Чтобы добиться такого эффекта, используем класс Region. Все, что нужно, — добавить в этот класс все видимые точки из картинки фона, пропуская прозрачные.

    В изображениях разных форматов прозрачность задается по-разному, поэтому и извлекается информация о прозрачных областях тоже не одинаково. Создаем область фона и добавляем туда все видимые точки:

    Устанавливаем форму окна:

    Теперь нужно создать слушателя событий для окна. Нас будут интересовать события рисования окна, события мыши и нажатия клавиш, чтобы окно можно было передвигать по экрану.

    Итак, по нажатию на клавишу Esc окно закроется. При нажатии левой клавиши мыши на области окна запомним координаты нажатия. При движении мыши с зажатой левой клавишей — передвигаем окно на экране соответственно движению. При событии перерисовки — рисуем картинку фона, используя графический контекст GC.

    Назначим слушатель соответствующим событиям окна:

    Устанавливаем размер окна равным размеру изображения:

    Открываем окно и запускаем цикл событий:

    Не забываем в конце освободить использованные ресурсы:

    Запустив программу на этом этапе, мы получим прямоугольничек, который можно двигать мышкой и закрывать по Esc.

    Настало время добавить содержания. Будем отображать текущую погоду в виде иконки состояния (солнечно, дождь, снег…), показаний температуры и времени последнего обновления.

    Для расположения графических компонентов в окне в нужном виде используются менеджеры компоновки. Менеджер компоновки занимается не только расположением компонентов, но и изменением их размеров при изменении размеров окна. Для нашего виджета будем использовать GridLayout. Этот менеджер располагает компоненты в ячейках воображаемой таблицы. Создаем GridBagLayout на две колонки с различной шириной колонок (флаг false в конструкторе), устанавливаем его в качестве менеджера компоновки окна:

    Для картинки статуса используем компонент Label. В качестве родителя передаем объект окна. Вторым параметром можно установить стиль компонента. Для каждого компонента набор возможных флагов стиля разный, их можно посмотреть в документации или прямо в исходниках компонента.

    Флаги в классе GridData означают, что метка будет располагаться слева вверху, будет растягиваться горизонтально и вертикально (флаги, установленные в true) при наличии свободного места и занимает одну строку и один столбец таблицы компоновки.

    В SWT нет прозрачного фона компонентов, и позади картинки статуса будет красоваться белый фон, чего, конечно, не хотелось бы. Поэтому создадим объект Color с цветом фона окна:

    В конце программы этот объект также необходимо очистить, вызвав метод dispose. Устанавливаем цвет фона и картинку статуса, которую можно загрузить из файла точно так же, как мы загрузили картинку фона вначале:

    Теперь добавим Label с текущей температурой и расположим его в правой верхней части окна:

    Установим какую-нибудь температуру:

    Для записи температуры по Цельсию используется юникодный номер соответствующего символа со служебными символами \u.

    Шрифт по умолчанию для текстовых меток слишком маленький. Так что создадим новый, побольше:

    FontData[] fD = temperatureLabel.getFont().getFontData(); fD[0].setHeight(30); fD[0].setStyle(SWT.BOLD); Font newFont = new Font(display, fD[0]); temperatureLabel.setFont(newFont); Шрифт, как и другие ресурсные объекты, нужно освобождать. Для этого воспользуемся слушателем события разрушения метки:

    Наконец, добавим метку с описанием погодных условий:

    Текст может быть довольно длинным, так что при создании метки указываем флаг WRAP, чтобы текст автоматически разбивался на несколько строк при нехватке места. Расположим компонент по центру и разрешим ему заполнить все горизонтальное пространство. Также укажем, что компонент занимает два столбца таблицы компоновки. Запускаем и получаем окошко с картинки «Виджет погоды».

    Теперь можно прикрутить какой-нибудь сервис погоды, создать таймер для автоматического обновления — и виджет готов.

    Swing: всегда свежие новости

    На Swing мы напишем виджет для отображения RSS-новостей. Начинаем, как и в прошлый раз, с создания окна. Класс, реализующий функционал стандартного окна в Swing, называется JFrame. По умолчанию закрытие окна приложения в Swing не приводит к остановке программы, так что лучше прописать, как должно себя вести окно при закрытии:

    Для представления новостей лучше всего подходит таблица. Swing построен на паттерне «Модель —представление — контроллер» (MVC). В архитектуре MVC модель предоставляет данные, представление отвечает за отображение данных (например, текст, поля ввода), а контроллер обеспечивает взаимодействие между моделью и представлением. Таблица хорошо демонстрирует этот подход. Для представления данных используется класс, реализующий интерфейс TableModel.

    Для хранения информации о доступных новостях заведем класс FeedMessage c полями для названия статьи и даты выхода:

    Чтобы упростить и ускорить разработку, наследуем нашу модель данных от класса AbstractTableModel, который предлагает готовую реализацию почти всех методов интерфейса TableModel.

    Метод fireTableDataChanged сообщает представлению, что модель данных изменилась и необходима перерисовка.

    Создаем таблицу и немного изменяем ее вид, чтобы она была больше похожа на виджет. Убираем линии между строками и столбцами, увеличиваем высоту строки и убираем заголовок таблицы с названиями колонок:

    Теперь займемся внешним видом ячеек. Swing позволяет назначать отдельные классы представления для разных типов данных. За отрисовку отдельных ячеек таблицы отвечает класс, наследующий интерфейс TableCellRenderer. По умолчанию используется DefaultTableCellRenderer, который представляет собой текстовую метку.

    Назначим свой отрисовщик ячейки для данных типа String. Изменим стандартный цвет шрифта и сделаем чередующийся цвет фона, чтобы улучшить читаемость.

    Чтобы таблица начала использовать наш отрисовщик, необходимо добавить метод, который возвращает тип данных для каждой ячейки, в модель данных:

    Новостей может быть много, поэтому поместим таблицу на панель прокрутки и сделаем ползунок прокрутки невидимым, чтобы он не портил нам дизайн виджета:

    Добавляем компонент прокрутки на главную панель окна. Вторым аргументом можно передать размещение компонента. По умолчанию главная панель окна использует менеджер компоновки BorderLayout, который располагает компоненты по сторонам света. Поместим таблицу с прокруткой в центре.

    Как и в прошлый раз, уберем стандартное обрамление окна. А в качестве заголовка окна будем использовать стилизованную текстовую метку, которую разместим вверху окна.

    В отличие от SWT, объекты «цвет» и «шрифт» освобождаются автоматически, так что можно больше не переживать за утечки памяти.

    Добавляем слушатели мыши, чтобы окно можно было двигать по экрану.

    Теперь поменяем форму окна на прямоугольник с закругленными углами. Лучше всего это делать в слушателе компонента, так как, если размер окна изменится, форма окна будет правильно пересчитана:

    Устанавливаем размер окна, убираем обрамление и делаем окно полупрозрачным.

    Наконец, открываем окно в графическом потоке. SwingUtilities.invokeLater(new Runnable() < public void run() < frame.setVisible(true); >>);

    Осталось дописать загрузку данных в отдельном потоке, и получим такой вот виджет с последними новостями твоего любимого журнала :).

    JavaFX: послушаем музычку

    И наконец, гвоздь сезона — JavaFX. Воспользуемся его мультимедийными возможностями и компонентом для построения графиков и сделаем простенький эквалайзер.

    Для начала наследуем класс виджета от Application. Это основной класс приложения в JavaFX. Application содержит основные методы жизненного цикла приложения. Компоненты формы создаются в методе start, аргументом которому служит класс Stage. Stage представляет собой окно программы. Изменим стиль окна на TRANSPARENT, чтобы убрать обрамление и кнопки. В Stage помещается класс Scene, в котором задаются размеры окна и цвет фона. В Scene, в свою очередь, передаем класс Group, в который будем помещать дочерние компоненты:

    Для отображения эквалайзера используем столбиковую диаграмму, по осям которой будем отображать частоту и мощность звука:

    Заполняем диаграмму начальными данными:

    Создаем прямоугольник с закругленными углами, чтобы придать виджету соответствующую форму:

    Добавляем оба компонента к группе:

    Назначаем слушателей мыши к группе, чтобы двигать окно по экрану:

    Загружаем песню в плеер:

    Добавляем слушатель, который будет обновлять столбиковую диаграмму:

    Делаем сцену видимой и запускаем песню:

    И наслаждаемся такой вот красотой.

    Заключение

    Как видишь, остается все меньше того, что не под силу Java. Кроме описанных графических библиотек, есть еще множество других, не таких распространенных, но не обязательно худших по качеству. У каждой из них есть свои сильные и слабые стороны. Java предоставляет право выбора тебе :).

    Создание в NetBeans приложения Java с графическим интерфейсом. Выбор библиотеки для создания графического интерфейса Java

    Библиотека Swing

    Современные программы нуждаются в графическом интерфейсе пользователя (GUI). Пользователи отвыкли работать через консоль: они управляют программой и вводят входные данные посредством так называемых элементов управления (в программировании их также называют визуальными компонентами), к которым относятся кнопки, текстовые поля, выпадающие списки и т.д.

    Каждый из современных языков программирования предоставляет множество библиотек для работы со стандартным набором элементов управления. Напомним, что под библиотекой в программировании набор готовых классов и интерфейсов, предназначенных для решения определенного круга задач.

    В Java есть три библиотеки визуальных компонентов для создания графического интерфейса пользователя. Самая ранняя из них называется AWT. Считается, что при ее проектировании был допущен ряд недочетов, вследствие которых с ней довольно сложно работать. Библиотека Swing разработана на базе AWT и заменяет большинство ее компонентов своими, спроектированными более тщательно и удобно. Третья, самая новая библиотека, называется SWT.

    Каждая библиотека предоставляет набор классов для работы с кнопками, списками, окнами, меню и т.д., но эти классы спроектированы по-разному: они имеют различный набор методов с разными параметрами, поэтому «перевести» программу с одной библиотеки на другую (например, с целью увеличения быстродействия) не так-то просто. Это почти как перейти с одного языка программирования на другой: все языки умеют делать одно и то же, но у каждого из них свой синтаксис, своя программная структура и свои многочисленные хитрости.

    По этой причине вместо того, чтобы делать обзор всех трех библиотек, мы постараемся получше разобраться в одной из них — библиотеке Swing. Полноценный графический интерфейс может быть разработан с ее помощью.

    Окно JFrame

    Каждая GUI-программа запускается в окне и по ходу работы может открывать несколько дополнительных окон.

    В библиотеке Swing описан класс JFrame , представляющий собой окно с рамкой и строкой заголовка (с кнопками «Свернуть», «Во весь экран» и «Закрыть»). Оно может изменять размеры и перемещаться по экрану.

    В Swing есть еще несколько классов окон. Например, JWindow — простейшее окно, без рамки и без строки заголовка. Обычно с его помощью делается заставка к программе, которая перед запуском должна выполнить несколько продолжительных действий (например, загрузить информацию из БД).

    Конструктор JFrame() без параметров создает пустое окно. Конструктор JFrame(String title) создает пустое окно с заголовком title .

    Чтобы написать простейшую программу, выводящую на экран пустое окно, нам потребуется еще три метода:

    setSize(int width, int height) — устанавливает размеры окна. Если не задать размеры, окно будет иметь нулевую высоту независимо от того, что в нем находится и пользователю после запуска придется растягивать окно вручную. Размеры окна включают не только «рабочую» область, но и границы и строку заголовка.

    setDefaultCloseOperation(int operation) — позволяет указать действие, которое необходимо выполнить, когда пользователь закрывает окно нажатием на крестик. Обычно в программе есть одно или несколько окон при закрытии которых программа прекращает работу. Для того, чтобы запрограммировать это поведение, следует в качестве параметра operation передать константу EXIT_ON_CLOSE , описанную в классе JFrame .

    setVisible(boolean visible) — когда окно создается, оно по умолчанию невидимо. Чтобы отобразить окно на экране, вызывается данный метод с параметром true . Если вызвать его с параметром false , окно снова станет невидимым.

    Теперь мы можем написать программу, которая создает окно, выводит его на экран и завершает работу после того, как пользователь закрывает окно.

    import javax.swing.*; public ); myWindow.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); myWindow.setSize(400, 300); myWindow.setVisible(true ); > >

    Обратите внимание, для работы с большинством классов библиотеки Swing понадобится импортировать пакет java.swing.*

    Как правило, перед отображением окна, необходимо совершить гораздо больше действий, чем в этой простой программке. Необходимо создать множество элементов управления, настроить их внешний вид, разместить в нужных местах окна. Кроме того, в программе может быть много окон и настраивать их все в методе main() неудобно и неправильно, поскольку нарушает принцип инкапсуляции: держать вместе данные и команды, которые их обрабатывают. Логичнее было бы, чтобы каждое окно занималось своими размерами и содержимым самостоятельно. Поэтому классическая структура программы с окнами выглядит следующим образом:

    В файле SimpleWindow.java:

    В файле Program.java:

    public >Из примера видно, что окно описывается в отдельном классе, являющемся наследником JFrame и настраивающее свой внешний вид и поведение в конструкторе (первой командой вызывается конструктор суперкласса). Метод main() содержится в другом классе, ответственном за управление ходом программы. Каждый из этих классов очень прост, каждый занимается своим делом, поэтому в них легко разбираться и легко сопровождать (т.е. совершенствовать при необходимости).

    Обратите внимание, что метод setVisible() не вызывается в классе SimpleWindow , что вполне логично: за тем, где какая кнопка расположена и какие размеры оно должно иметь, следит само окно, а вот принимать решение о том, какое окно в какой момент выводится на экран — прерогатива управляющего класса программы.

    Панель содержимого

    Напрямую в окне элементы управления не размещаются. Для этого служит панель содержимого, занимающая все пространство окна* . Обратиться к этой панели можно методом getContentPane() класса JFrame . С помощью метода add(Component component) можно добавить на нее любой элемент управления.

    В примерах этого занятия мы будем использовать только один элемент управления — кнопку (не вдаваясь в подробности ее устройства). Кнопка описывается классом JButton и создается конструктором с параметром типа String — надписью.

    Добавим кнопку в панель содержимого нашего окна командами:

    JButton newButton = new JButton(); getContentPane().add(newButton);

    В результате получим окно с кнопкой. Кнопка занимает всю доступную площадь окна. Такой эффект полезен не во всех программах, поэтому необходимо изучить различные способы расположения элементов на панели.

    Класс Container (контейнер)

    Элементы, которые содержат другие элементы, называются контейнерами. Все они являются потомками класса Container и наследуют от него ряд полезных методов:

    add(Component component) — добавляет в контейнер элемент component ;

    remove(Component component) — удаляет из контейнера элемент component ;

    removeAll() — удаляет все элементы контейнера;

    getComponentCount() — возвращает число элементов контейнера.

    Кроме перечисленных в классе Container определено около двух десятков методов для управления набором компонентов, содержащихся в контейнере. Как видно, они похожи на методы класса-коллекции. Это неудивительно, ведь по сути контейнер и является коллекцией, но коллекцией особого рода — визуальной. Кроме хранения элементов контейнер занимается их пространственным расположением и прорисовкой. В частности, он имеет метод getComponentAt(int x, int y) , возвращающий компонент, в который попадает точка с заданными координатами (координаты отсчитываются от левого верхнего угла компонента) и ряд других. Мы не будем подробно рассматривать абстрактный контейнер, а сразу перейдем к его наиболее часто используемому потомку — классу JPanel .

    Класс JPanel (панель)

    Панель JPanel — это элемент управления, представляющий собой прямоугольное пространство, на котором можно размещать другие элементы. Элементы добавляются и удаляются методами, унаследованными от класса Container .

    В примере с кнопкой мы наблюдали, как добавленная на панель содержимого кнопка заняла все ее пространство. Это происходит не всегда. На самом деле у каждой панели есть так называемый менеджер размещения , который определяет стратегию взаимного расположения элементов, добавляемых на панель. Его можно изменить методом setLayout(LayoutManager manager) . Но чтобы передать в этот метод нужный параметр, необходимо знать, какими бывают менеджеры.

    Менеджер последовательного размещения FlowLayout

    Самый простой менеджер размещения — FlowLayout . Он размещает добавляемые на панель компоненты строго по очереди, строка за строкой, в зависимости от размеров панели. Как только очередной элемент не помещается в текущей строке, он переносится на следующую. Лучше всего пронаблюдать это на примере. Изменим конструктор класса SimpleWindow следующим образом:

    Менеджеры расположения описаны в пакете java.awt. Не забывайте импортировать нужные классы.

    Пронаблюдайте за поведением окна, появляющегося после запуска программы. Четыре кнопки в нем расположены как слова в текстовом редакторе (при выравнивании по центру). Эффект будет лучше заметен, если изменять размеры окна во время работы программы.

    Проанализируем текст примера. Новый менеджер расположения FlowLayout создается конструктором без параметров. Обратите внимание, в программе не используется промежуточная переменная. То есть вместо двух команд:

    FlowLayout newLayout = new FlowLayout(); panel.setLayout(newLayout);

    Мы используем одну:

    Это вполне допустимо в тех случаях, когда в дальнейшем нам не потребуется обращаться к создаваемому объекту (что справедливо для данного примера). Мы создаем менеджер расположения, тут же привязываем его к панели — и все. Теперь панель и менеджер сами найдут друг с другом общий язык.

    о взаимоотношениях панели и ее менеджера

    Панель хранит ссылку на своего менеджера и сама обращается к нему каждый раз, когда нужно рассчитать координаты элементов (это происходит при их добавлении, удалении, изменении размеров, а также при изменении размеров окна). В принципе, мы можем даже получить этого менеджера методом getLayout() класса JPanel , но, как правило, в этом вообще нет необходимости.

    Кстати, класс JPanel кроме конструктора без параметров, имеет конструктор, в котором в качестве параметра задается менеджер расположения. Поэтому вместо команд

    JPanel panel = new JPanel(); panel.setLayout(new FlowLayout());

    JPanel panel = new JPanel(new FlowLayout());

    Более того, по умолчанию вновь создаваемая панель имеет именно менеджер расположения FlowLayout . Поэтому в приведенном выше примере мы устанаваем менеджера скорее для наглядности, вообще же, делать это не обязательно.

    Точно также мы добавляем на панель новые кнопки. Мы нигде больше не пытаемся обратиться к этим кнопкам в программе, поэтому заводить под них переменные нет смысла.

    Метод setContentPane(JPanel panel) позволяет заменить панель содержимого окна.

    Менеджер граничного размещения BorderLayout

    Менеджер размещения BorderLayout разделяет панель на пять областей: центральную, верхнюю, нижнюю, правую и левую. В каждую из этих областей можно добавить ровно по одному компоненту, причем компонент будет занимать всю отведенную для него область. Компоненты, добавленные в верхнюю и нижнюю области, будут растянуты по ширине, добавленные в правую и левую — по высоте, а компонент, добавленный в центр, будет растянут так, чтобы полностью заполнить оставшееся пространство панели.

    При добавлении элемента на панель с менеджером размещения BorderLayout , необходимо дополнительно указывать в методе add() , какая из областей имеется в виду. Для этого служат строки с названиями сторон света: «North» , «South» , «East» , «West» и «Center» . Но вместо них рекомендуется использовать константы, определенные в классе BorderLayout: NORTH , SOUTH , EAST , WEST и CENTER (поскольку в строке можно допустить ошибку и не заметить этого, а при попытке написать неправильно имя константы компилятор выдаст предупреждение). Если же использовать метод add() как обычно, с одним параметром, элемент будет добавлен в центр.

    Панель содержимого имеет именно такое расположение, именно поэтому кнопка и занимала все окно целиком (она была добавлена в центральную область). Чтобы пронаблюдать эффект BorderLayout , добавим кнопки во все пять областей:

    Эффект будет хорошо наблюдаться, если изменять размеры окна.

    Данное размещение не случайно используется в панели содержимого по умолчанию. Большинство программ пользуются областями по краям окна, чтобы расположить в них панели инструментов, строку состояния и т.п. А ограничение на один компонент в центральной области абсолютно не существенно, ведь этим компонентом может быть другая панель со множеством элементов и с любым менеджером расположения.

    Менеджер табличного размещения GridLayout

    GridLayout разбивает панель на ячейки одинаковой ширины и высоты (таким образом окно становится похожим на таблицу). Каждый элемент, добавляемый на панель с таким расположением, целиком занимает одну ячейку. Ячейки заполняются элементами по очереди, начиная с левой верхней.

    Этот менеджер, в отличие от рассмотренных ранее, создается конструктором с параметрами (четыре целых числа). Необходимо указать количество столбцов, строк и расстояние между ячейками по горизонтали и по вертикали. Выполните следующий пример и пронаблюдайте эффект.

    Менеджер блочного размещения BoxLayout и класс Box

    Менеджер BoxLayout размещает элементы на панели в строку или в столбец.

    Обычно для работы с этим менеджером используют вспомогательный класс Box , представляющий собой панель, для которой уже настроено блочное размещение. Создается такая панель не конструктором, а одним из двух статических методов, определенных в классе Box: createHorizontalBox() и createVerticalBox() .

    Элементы, добавленные на панель с блочным размещением, выстраиваются один за другим. Расстояние между элементами по умолчанию нулевое. Однако вместо компонента можно добавить невидимую «распорку», единственная задача которой — раздвигать соседние элементы, обеспечивая между ними заданное расстояние. Горизонтальная распорка создается статическим методом createHorizontalStrut(int width) , а вертикальная — методом createVerticalStrut(int height) . Оба метода определены в классе Box , а целочисленный параметр в каждом из них определяет размер распорки.

    Кроме того, на такую панель можно добавить еще один специальный элемент — своеобразную «пружину». Если размер панели будет больше, чем необходимо для оптимального размещения всех элементов, те из них, которые способны растягиваться, будут стараться заполнить дополнительное пространство собой. Если же разместить среди элементов одну или несколько «пружин», дополнительное свободное пространство будет распределяться и в эти промежутки между элементами. Горизонтальная и вертикальная пружины создаются соответственно методами createHorizontalGlue() и createVerticalGlue() .

    Понять особенности работы этого менеджера лучше на наглядном примере. Мы расположим четыре кнопки вертикально, поставив между двумя центральными «пружину», а между остальными — распорки в 10 пикселов.

    Особенности выравнивания элементов

    В примере с вертикальной панелью все кнопки оказались выровнены по левому краю. Такое выравнивание по горизонтали принято по умолчанию.

    Однако при разработке окна программы может понадобиться, чтобы какие-то элементы были выровнены иначе, например, по правому краю или по центру. Для того, чтобы установить выравнивание любого визуального компонента (например, кнопки или панели), используются методы setAlignmentX(float alignment) — выравнивание по горизонтали и setAlignmentY(float alignment) — выравнивание по вертикали. В качестве параметра проще всего использовать константы, определенные в классе JComponent . Для выравнивания по горизонтали служат константы LEFT_ALIGNMENT (по левому краю), RIGHT_ALIGNMENT (по правому краю) и CENTER_ALIGNMENT (по центру). Для выравнивания по вертикали — BOTTOM_ALIGNMENT (по нижнему краю), TOP_ALIGNMENT (по верхнему краю) и CENTER_ALIGNMENT (по центру).

    Однако выравнивание работает несколько иначе, чем ожидается. Чтобы это обнаружить, изменим предыдущий пример, выровняв третью кнопку по правому краю. Для этого заменим строку:

    JButton rightButton = new JButton(«-» ); rightButton.setAlignmentX(JComponent.RIGHT_ALIGNMENT); box.add(rightButton);

    Нам пришлось ввести переменную для обращения к этой кнопке, поскольку теперь нам нужно выполнить с ней не одно, а два действия: установка выравнивания по правому краю и добавление в панель. Прежний прием — одновременное создание кнопки и передача ее в качестве параметра в метод — здесь не сработает.

    После запуска программы мы увидим окно, в котором кнопки расположены не так, как, наверное, ожидалось. Мы привыкли, что выравнивание по правому краю прижимает объект к правому краю контейнера, но в данном случае перестроились все элементы, причем кнопка с выравниванием по правому краю оказалась самой левой.

    Объяснение просто. При выравнивании по правому краю объект не прижимается к правому краю компонента. Вместо этого он прижимается правым краем к невидимой линии выравнивания. Все остальные компоненты прижимаются к этой линии своим левым краем, поэтому и получается наблюдаемый эффект.

    Единственная трудность для начинающего разработчика может оказаться в том, что не всегда легко понять, где именно пройдет эта линия. Ее положение зависит от размеров и выравнивания всех элементов контейнера. Однако легко запомнить простое правило: если все элементы в контейнере выровнены одинаково, мы получим привычное поведение (как это и было в предыдущем примере, когда все компоненты были выровнены влево и линия в результате прижалась к левому краю панели.

    о выравнивании элементов

    Параметр выравнивания на самом деле представляет собой вещественное число в диапазоне от 0 до 1. Он показывает, какая часть компонента окажется слева от линии выравнивания, т.е. в каких пропорциях компонент будет «разрезан». Константы LEFT_ALIGNMENT и TOP_ALIGNMENT на самом деле равны 0, RIGHT_ALIGNMENT и BOTTOM_ALIGNMENT равны 1, а CENTER_ALIGHNMENT — 0.5. Можно подставлять эти числа напрямую (хотя использование констант значительно повышает наглядность!), а можно выбрать любое другое число от 0 до 1 и настроить совершенно произвольное выравнивание.

    Попробуйте поэкспериментировать с вертикальной панелью, задавая различное выравнивание для ее элементов, чтобы интуитивно понять логику размещения линии выравнивания. Изменяйте размеры окна во время работы программы, чтобы увидеть как меняется положение этой линии.

    Ручное размещение элементов

    Если в качестве менеджера размещения панели установить null , элементы не будут расставляться автоматически. Координаты каждого элемента необходимо в этом случае указать явно, при этом они никак не зависят от размеров панели и от координат других элементов. По умолчанию координаты равны нулю (т.е. элемент расположен в левом верхнем углу панели). Размер элемента также необходимо задавать явно (в противном случае его ширина и высота будут равны нулю и элемент отображаться не будет).

    Координаты элемента можно задать одним из следующих методов:

    setLocation(int x, int y) ,

    Эти методы работают аналогично, устанавливая левый верхний угол элемента в точку с заданными координатами. Разница в способе задания точки. Можно представить точку двумя целыми числами, а можно объектом класса Point . Класс Point по сути представляет собой ту же пару чисел, его конструктор имеет вид Point(int x, int y) . Получить доступ к отдельной координате можно методами getX() и getY() .

    Можно задаться вопросом: зачем использовать класс Point , если можно просто передать пару чисел? Но дело в том, что многие полезные методы возвращают результат — координаты некоторой точки — в виде объекта этого класса. Например, метод getLocation() , возвращающий координаты элемента. Предположим, нам нужно поместить элемент b в точности в то место, которое занимает элемент a . Этого легко добиться одной строкой:

    Размер элемента задается одним из двух методов:

    setSize(int width, int height) ,

    Эти методы работают одинаково — разница, как и в прошлый раз, в способе передачи параметра. Класс Dimension , аналогично классу Point , просто хранит два числа, имеет конструктор с двумя параметрами: Dimension(int width, int height) и позволяет получить доступ к своим составляющим — ширине и высоте — с помощью простых методов getWidth() и getHeigth() . Для того, чтобы получить текущий размер элемента, можно воспользоваться методом getSize() , возвращающего объект класса Dimension . Элемент b можно сделать точно такого же размера, как элемент a , выполнив команду:

    Создадим панель, с которой не будет связано никакого менеджера размещения и вручную разместим на ней две кнопки:

    Мы используем одну и ту же переменную button для обращения к обеим кнопкам (причем, второй раз ее описывать не нужно). В самом деле, осуществив все необходимые операции с первой кнопкой и зная, что обращаться к ней нам больше не понадобится, мы используем «освободившуюся» переменную для манипуляций со второй.

    Автоматическое определение размеров компонентов

    Если у панели есть любой менеджер размещения, она игнорирует явно заданные размеры и координаты всех своих элементов. В этом легко убедиться, заменив в предыдущем примере команду panel.setLayout(null ) на panel.setLayout(new FlowLayout()) . Менеджер размещения сам определяет координаты и размеры всех элементов.

    Способ определения координат элементов очевидным образом вытекает из алгоритмов работы каждого менеджера и, таким образом, детально рассмотрен нами выше.

    Мы также отмечали, что в некоторых случаях компоненты стараются заполнить все доступное им пространство. Например, всю центральную область в случае менеджера BorderLayout или всю ячейку в менеджере GridLayout . А в панели с менеджером FlowLayout , напротив, элементы никогда не пытаются выйти за определенные границы. Рассмотрим, что это за границы.

    Каждый визуальный компонент имеет три типа размеров: минимально допустимый, максимально допустимый и предпочтительный. Узнать, чему равны эти размеры для данного компонента можно с помощью соответствующих методов:

    Методы возвращают результат типа Dimension . Они запрограммированы в соответствующем классе. Например, у кнопки минимальный размер — нулевой, максимальный размер не ограничен, а предпочтительный зависит от надписи на кнопке (вычисляется как размер текста надписи плюс размеры полей).

    Менеджер FlowLayout всегда устанавливает предпочтительные размеры элементов. Менеджер BorderLayout устанавливает предпочтительную ширину правого и левого, а также предпочтительную высоту верхнего и нижнего. Остальные размеры подгоняются под доступное пространство панели. Менеджер GridLayout пытается подогнать размеры всех элементов под размер ячеек. Менеджер BoxLayout ориентируется на предпочтительные размеры.

    Когда элемент старается занять все доступное ему пространство, он «учитывает» пожелания не делаться меньше своих минимальных или больше максимальных.

    Всеми тремя размерами можно управлять с помощью соответствующим методов set:

    Чаще всего используется простой прием, когда элементу «не рекомендуется» увеличиваться или уменьшаться относительно своих предпочтительных размеров. Это легко сделать командой:

    «Упаковка» окна

    В рассмотренных выше примерах мы явно задавали размер окна методом setSize() . Но когда используется какой-либо менеджер расположения, расставляющий элементы и изменяющий их размеры по собственным правилам, трудно сказать заранее, какие размеры окна будут самыми подходящими.

    Безусловно, наиболее подходящим будет вариант, при котором все элементы окна имеют предпочтительные размеры или близкие к ним* .


    Если вместо явного указания размеров окна, вызвать метод pack() , они будут подобраны оптимальным образом с учетом предпочтений всех элементов, размещенных в этом окне.

    Заметьте, что когда панель не имеет метода размещения, эта команда не работает (поскольку панель не имеет алгоритма для вычисления своего предпочтительного размера).

    Упражнение

    Как уже отмечалось, элементом панели может быть другая панель. Создайте панель с тремя кнопками и менеджером размещения FlowLayout и панель с двумя кнопками и менеджером размещения BoxLayout (горизонтальным). Разместите обе панели в главном окне (не изменяя менеджера размещения у панели содержимого): одну в центр, а другую вдоль любой стороны окна.

    Рамки

    Когда панели служат не просто для размещения элементов в соответствии с алгоритмом некоторого менеджера, а для визуального отделения их друг от друга, они оформляются с помощью рамок.

    Рамка панели устанавливается методом setBorder(Border border) . Параметром метода выступает рамка — объект класса Border . Это абстрактный класс, поэтому для создания рамки используются его наследники:

    EmptyBorder — пустая рамка, позволяет создать отступы вокруг панели. Размеры отступов задаются в конструкторе четырьмя целыми числами.

    TitledBorder — рамка с заголовком. Простейший конструктор имеет один параметр типа String (текст заголовка). Заголовок может размещаться вдоль любой стороны рамки, иметь различные начертания.

    EtchedBorder — рамка с тиснением. Может быть вогнутой или выпуклой.

    BevelBorder — объемная рамка (выпуклая или вогнутая). Можно настроить цвета, требуемые для получения объемных эффектов.

    SoftBevelBorder — то же самое, что BevelBorder, но позволяет дополнительно скруглить углы.

    LineBorder — простая рамка, нарисованная сплошной линией. Можно выбирать цвет и толщину линии, скруглить углы.

    MatteBorder — рамка из повторяющегося рисунка.

    CompoundBorder — объединяет две рамки, передаваемые в качестве параметров конструктору в одну новую рамку.

    Все перечисленные классы описаны в пакете javax.swing.border.

    Рассмотрим пример. В этом примере мы создадим шесть панелей с различными рамками и разместим их в виде таблицы. Чтобы не описывать шесть раз процедуру создания новой панели, вынесем ее в отдельный метод:

    Private JPanel createPanel(Border border, String text)

    Метод createPanel() создает панель с кнопкой во весь свой размер. В качестве параметра передается надпись на кнопке и рамка, которую необходимо добавить к панели. Рамка добавляется не напрямую, а путем композиции с пустой рамкой. Этот прием часто используется, чтобы рамка не прилипала к краю панели.

    Теперь шесть раз воспользуемся этим методом в конструкторе окна программы.

    Этот пример показывает, с помощью каких конструкторов создаются различные рамки и как они выглядят. В нем использованы два новых класса: Color и ImageIcon .

    Класс Color предназначен для работы с цветом. В нем есть несколько констант, описывающих наиболее распространенные цвета. В частности, к таковым относится Color.ORANGE .

    Класс ImageIcon описывает графическое изображение. Параметр его конструктора — это путь к файлу, из которого изображение может быть загружено. В примере используется относительное имя файла «1.gif». Чтобы объект ImageIcon был успешно создан, файл с таким именем должен быть помещен в папку проекта.

    Одно из важных достоинств Java состоит в том, что это не только язык, но и стандартизованная объектно-ориентированная среда выполнения. Любопытно проследить, как в рамках Java решаются традиционные программистские проблемы. Мы остановимся на оконном графическом интерфейсе.

    Вместе с различными приятными (главным образом для пользователя) свойствами, оконный интерфейс привносит и довольно неприятные (для разработчика) проблемы. Одна из них — это переносимость приложений между разными платформами. Переносимость является проблемой и без графического интерфейса, однако наличие такового делает ее многократно сложнее.

    Дело в том, что каждая оконная среда — это сложный мир, со своими законами, набором строительных блоков и приемов программирования. Motif не похож на MS-Windows и оконную систему Macintosh. По-разному представляются примитивные элементы интерфейса, по-разному обрабатываются внешние события, по-разному происжодит рисование на экране и т.д.

    Вместе с тем, по своей сути оконная среда — просто идеальное поле деятельности для объектного программирования. Даже человеку, неискушенному в объектно-ориентированных методах проектирования, ясно, что такие вещи, как кнопки, текстовые поля, меню, вполне заслуживают названия объектов, как бы это слово ни понималось. Иначе говоря, вполне понятно, что такое “кнопка вообще”, “список вообще” и т.д.

    Все это дает основания надеяться, что с помощью объектно-ориентированного подхода можно получить по-настоящему высокоуровневую и переносимую оконную среду, основанную на абстрактных типах данных.

    Данная особенность оконных сред проявилась, в частности, в появлении довольно большого количества различных классовых библиотек, “обертывающих” оригинальные оконные системы. В качестве примеров можно привести MFC, OWL, Zink и многие другие.

    Вот и среди стандартных Java-библиотек присутствует AWT или Abstract Windowing Toolkit — абстрактный оконный инструментарий.

    AWT является системой классов для поддержки программирования в оконной среде. Его “абстрактность” проявляется в том, что все, зависящее от конкретной платформы, хорошо локализовано и спрятано. В AWT реализованы такие простые и понятные вещи, как кнопки, меню, поля ввода; простые и понятные средства организации интерфейса — контейнеры, панели, менеджеры геометрии.

    Основы построения графического пользовательского интерфейса Компоненты и контейнеры

    Если посмотреть на любое оконное приложение, то легко увидеть, что интерфейсная часть состоит из объектов, объединенных в группы. В AWT объекты называются компонентами (на самом деле они все являются наследниками класса Component), а группы объектов реализованы с помощью так называемых контейнеров. Отметим, что любой контейнер — это тоже компонента, поэтому группы объектов могут быть вложены друг в друга. Как обычно, меню стоят особняком.

    К числу примитивных компонент относятся:

    Взаимодействие интерфейсных компонент с пользователем реализовано с помощью аппарата событий, о котором будет рассказано ниже.

    Скажу сразу — при работе с графикой, скорее всего, со временем Вам придется воспользоваться всеми предоставленными инструментами без исключения для достижения наилучшего визуального эффекта. Подробное описание о том «что и как» можно найти — это официальный туториал по Graphics2D. Его должно быть более чем достаточно, чтобы ввести Вас в курс дела.

    Я уже привел небольшой пример написания своего UI, но есть и другие варианты кастомизации интерфейса. Каждый отдельный J-компонент производит свою Lightweight-отрисовку при помощи метода paint(), который можно легко переопределить и изменить. Напрямую (не всегда, но чаще всего) его лучше не использовать (не буду вдаваться в подробности, так как это целая тема для отдельного топика). Для следующего примера используем метод paintComponent(). Рассмотрим как его можно применить поближе…

    Начну с примера — текстовое поле с визуальным фидбэком при отсутствии содержимого:

    JTextField field = new JTextField()
    <
    private boolean lostFocusOnce = false ;
    private boolean incorrect = false ;

    <
    // Слушатели для обновления состояния проверки
    addFocusListener (new FocusAdapter()
    <
    public void focusLost (FocusEvent e)
    <
    lostFocusOnce = true ;

    repaint ();
    >
    >);
    addCaretListener (new CaretListener()
    <
    public void caretUpdate (CaretEvent e)
    <
    if (lostFocusOnce)
    <
    incorrect = getText ().trim ().equals («» );
    >
    >
    >);
    >

    protected void paintComponent (Graphics g)
    <
    super.paintComponent (g);

    // Расширенная отрисовка при некорректности данных
    if (incorrect)
    <
    Graphics2D g2d = (Graphics2D) g;

    // Включаем антиалиасинг для гладкой отрисовки
    g2d.setRenderingHint (RenderingHints.KEY_ANTIALIASING,
    RenderingHints.VALUE_ANTIALIAS_ON);

    // Получаем отступы внутри поля
    Insets insets;
    if (getBorder () == null )
    <
    insets = new Insets (2, 2, 2, 2);
    >
    else
    <
    insets = getBorder ().getBorderInsets (this );
    >

    // Создаем фигуру в виде подчеркивания текста
    GeneralPath gp = new GeneralPath (GeneralPath.WIND_EVEN_ODD);
    gp.moveTo (insets.left, getHeight () — insets.bottom);
    for (int i = 0; i <
    gp.lineTo (insets.left + i,
    getHeight () — insets.bottom — ((i / 3) % 2 == 1 ? 2: 0));
    >

    // Отрисовываем её красным цветом
    g2d.setPaint (Color.RED);
    g2d.draw (gp);
    >
    >
    >;

    Наличие содержимого перепроверяется при печати и потере фокуса полем. Переключившись на другой компонент мы увидим как отрисовывается наше дополнение к JTextField»у:

    Полный код примера можно взять .

    Таким образом можно расширить любой доступный компонент быстро переопределив и дополнив метод отрисовки, не прибегая к написанию отдельных громоздких UI или полноценных компонентов. Плюс данный пример можно достаточно легко вынести в отдельный класс и использовать как готовый элемент для своего интерфейса.
    Еще одним плюсом данного способа является то, что Вы получаете независимый от текущего установленного приложению/компоненту LaF/UI — он будет работать всегда. Естественно, для некоторых специфичных UI может понадобиться немного иная отрисовка — поддерживать её или нет — Вам решать.

    Хотя зачастую и хочется сделать интерфейс ярче и привлекательней, не всегда требуется для этого изобретать новые компоненты — можно воспользоваться стандартными средствами. Приведу пример кастомизации простейшего чекбокса анимированной сменой состояний и фона. В этот раз я опять (да, можете бить меня палками) воспользуюсь заготовленными изображениями из умелых рук дизайнера.

    За основу берутся 8 изображений 16х16 — 4 состояния фона чекбокса и 4 состояния галки (5 на самом деле, но 5ое мы добавим програмно):

    У стандартного чекбокса, конечно, нету возможности задать спрайты для анимации состояний, к тому же нам нужно наложить изображения галки на фоновые в разных вариациях. Для этого допишем отдельный метод:

    public static List BG_STATES = new ArrayList ();
    public static List CHECK_STATES = new ArrayList ();

    static
    <
    // Иконки состояния фона
    for (int i = 1; i

    new BufferedImage (16, 16, BufferedImage.TYPE_INT_ARGB)));

    // Состояния выделения
    for (int i = 1; i iconsCache = new HashMap ();

    private synchronized void updateIcon ()
    <
    // Обновляем иконку чекбокса
    final String key = bgIcon + «,» + checkIcon;
    if (iconsCache.containsKey (key))
    <
    // Необходимая иконка уже была ранее использована
    setIcon (iconsCache.get (key));
    >
    else
    <
    // Создаем новую иконку совмещающую в себе фон и состояние поверх
    BufferedImage b = new BufferedImage (BG_STATES.get (0).getIconWidth (),
    BG_STATES.get (0).getIconHeight (), BufferedImage.TYPE_INT_ARGB);
    Graphics2D g2d = b.createGraphics ();
    g2d.drawImage (BG_STATES.get (bgIcon).getImage (), 0, 0,
    BG_STATES.get (bgIcon).getImageObserver ());
    g2d.drawImage (CHECK_STATES.get (checkIcon).getImage (), 0, 0,
    CHECK_STATES.get (checkIcon).getImageObserver ());
    g2d.dispose ();

    ImageIcon icon = new ImageIcon (b);
    iconsCache.put (key, icon);
    setIcon (icon);
    >
    >

    Остается добавить несколько обработчиков переходов состояний и мы получим анимированный переход между ними:

    Получившийся компонент очень легко будет видоизменить к примеру в радиобаттон, или же добавить в него больше состояний перехода для более плавной анимации и т.п.
    Собственно, полный рабочий код и изображения выложил отдельно .

    Таким образом путей кастомизации элементов есть достаточно много (даже я, наверно, не знаю/не догадываюсь о некоторых из них). Какой способ выбирать — зависит от ситуации — что необходимо получить, какие изменения возможно сделать в существующем компоненте и т.д.

    В завершение данной главы, приведу еще один пример полностью видоизмененного UI кнопки с анимацией, возможностью загругления отдельных углов, возможностью настройки стиля и некоторыми другими улучшениями. Вот несколько скринов с итоговым внешним видом (конечно, анимация тут не видна):

    Не буду врать, на данный UI кнопки ушло достаточно много времени, но он создавался без помощи и подсказок дизайнера чистыми средствами Graphics2D и Swing. можно скачать и изучить полный сурс и демо данного UI, если Вам стало интересно. В нем использован достаточно большой спектр возможностей Graphics2D и применены некоторые хитрости, которые могут зачастую оказаться полезными.

    Итак, думаю достаточно разговоров о графике — о ней более подробно я расскажу в будущих топиках, а сейчас приведу немного интересного материала, который я наработал за достаточно долгое время «общения» со Swing и Graphics2D.

    DnD и GlassPane

    Чтож, начнем по порядку — что мы знаем о DnD?
    У некоторых Swing-компонентов есть готовые реализации для драга (JTree и JList к примеру) — для других можно достаточно легко дописать свою. Чтобы не бросаться словами на ветер — приведу небольшой пример DnD стринга из лэйбла:

    JLabel label = new JLabel ( «Небольшой текст для DnD» );
    label.setTransferHandler (new TransferHandler()
    <
    public int getSourceActions (JComponent c)
    <
    return TransferHandler.COPY;
    >

    public boolean canImport (TransferSupport support)
    <
    return false ;
    >

    protected Transferable createTransferable (JComponent c)
    <
    return new StringSelection (((JLabel) c).getText ());
    >
    >);
    label.addMouseListener (new MouseAdapter()
    <
    public void mousePressed (MouseEvent e)
    <
    if (SwingUtilities.isLeftMouseButton (e))
    <
    JComponent c = (JComponent) e.getSource ();
    TransferHandler handler = c.getTransferHandler ();
    handler.exportAsDrag (c, e, TransferHandler.COPY);
    >
    >
    >);

    Но что делать, если необходимо отследить последовательность действий пользователя при самом перетаскивании?
    Для этого есть отдельная возможность повесить слушатель:

    DragSourceAdapter dsa = new DragSourceAdapter()
    <
    public void dragEnter (DragSourceDragEvent dsde)
    <
    // При входе драга в область какого-либо компонента
    >

    public void dragExit (DragSourceEvent dse)
    <
    // При выходе драга в область какого-либо компонента
    >

    public void dropActionChanged (DragSourceDragEvent dsde)
    <
    // При смене действия драга
    >

    public void dragOver (DragSourceDragEvent dsde)
    <
    // При возможности корректного завершения драга
    >

    public void dragMouseMoved (DragSourceDragEvent dsde)
    <
    // При передвижении драга
    >

    public void dragDropEnd (DragSourceDropEvent dsde)
    <
    // При завершении или отмене драга
    >
    >;
    DragSource.getDefaultDragSource ().addDragSourceListener (dsa);
    DragSource.getDefaultDragSource ().addDragSourceMotionListener (dsa);

    Приведу для большего понимания небольшой пример подобного «эффекта» — фрейм с несколькими Swing-компонентами на нем. При клике в любой части окна будет появляться эффект «распозающегося» круга, который виден поверх всех элементов. Что самое интересное — подобный эффект не съедает ресурсов и не требует большой груды кода. Не верите? — посмотрите демо и загляните в исходник, вложенный в jar.

    Кстати говоря, есть достаточно интересная библиотека на эту тему, заодно предоставляющая дополнительный скролл-функционал и несколько других вкусностей — JXLayer (офф сайт) (описание #1 описание #2 описание #3). К сожалению проекты хостящиеся на сайте java сейчас находтся не в лучшем состоянии, поэтому приходится ссылаться на отдельные ресурсы.

    Итак теперь объединим всё что я уже описал в данной главе и сделаем, наконец, что-то полноценное. К примеру — отображение драга панели с компонентами внутри окна:

    При драге панели за лэйбл появляется полупрозрачная копия панели показывающая где именно будет размещена панель при завершении драга. Также клавишей ESC можно отменить перемещение.
    Рабочий пример и исходный код можно взять .

    Конечно, для реализации именно данной функциональности не стоило бы прибегать к использованию DnD — есть более короткие пути. Впрочем, всё зависит от ситуации. Данный вариант позволяет отрисовывать перетаскивание независимо от других компонентов в окне. Также можно на основе него, к примеру, реализовать драг панели между окнами приложения.

    AWTUtilities

    Что же нам это дает? На самом деле — достаточно широкий спектр возможностей. Окнам своего приложения можно задавать любые хитрые формы какие Вам только потребуются, делать «дырки» посреди приложения, создавать кастомные тени под окно, делать приятные на вид попапы и пр. и пр.

    Если переходить к конкретике — setWindowShape на деле я никогда не использую, так как задаваемая окну форма строго обрезается по краю и не очень приятно выглядит. На помощь приходит setWindowOpaque — спрятав оформление и фон окна можно с помощью контейнера с кастомным отрисованным фоном создавать абсолютно любые окна. Приведу небольшой пример использования (в нем также есть также использованы некоторые приемы из предыдущих глав поста):

    можно взять работающий jar с исходным кодом. Честно скажу, что потратил на данный пример не более десяти минут (из них — минут пять прикидывал как расположить элементы внутри диалога:). Естественно это лишь один из вариантов примемения этих новых возможностей — на самом деле их куда больше.

    Единственная неприятная мелочь в использовании AWTUtilities – нестабильная работа на Linux-системах. Т.е. Не везде и не всегда корректно отрабатывает прозрачность окон. Не уверен, проблемы ли это текущей JDK или же ОС.

    Создание своих интерактивных компонентов

    Итак, за основу лучше лучше всего взять JComponent и используя paint-методы отрисовать его содержимое. Фактически JСomponent сам по себе — чистый холст с некоторыми зашитыми улучшениями для отрисовками и готовыми стандартными методами setEnabled/setFont/setForeground/setBackground и т.п. Как использовать (и использовать ли их) решать Вам. Все, что Вы будете добавлять в методы отрисовки станет частью компонента и будет отображаться при добавлении его в какой-либо контейнер.

    Кстати, небольшое отступление, раз уж зашла речь о контейнерах, — любой наследник и сам JComponent являются контейнерами, т.е. могут содержать в себе другие компоненты, которые будет расположены в зависимости от установленного компоненту лэйаута. Что же творится с отрисовкой чайлд-компонентов, лежащих в данном и как она связана с отрисовкой данного компонента? Ранее я не вдавался подробно в то, как устроены и связаны paint-методы Jcomponent»а, теперь же подробно опишу это…

    Фактически, paint() метод содержит в себе вызовы 3ех отдельных методов — paintComponent, paintBorder и paintChildren. Конечно же дополнительно он обрабатывает некоторые «особенные» случаи отрисовки как, например печать или перерисовку отдельной области. Эти три метода всегда вызываются в показанной на изображении выше последовательности. Таким образом сперва идет отрисовка самого компонента, затем поверх рисуется бордер и далее вызывается отрисовка чайлд-компонентов, которые в свою очередь также вызывают свой paint() метод и т.д. Естественно есть еще и различные оптимизации, предотвращающие лишние отрисовки, но об этом подробнее я напишу потом.

    Компонент отрисован, но статичен и представляет собой лишь изображение. Нам необходимо обработать возможность управления им мышью и различными хоткеями.
    Для этого, во-первых, необходимо добавить соответствующие слушатели (MouseListener/MouseMotionListener/KeyListener) к самому компоненту и обрабатывать отдельные действия.

    Чтобы не объяснять все на пальцах, приведу пример компонента, позволяющего визуально ресайзить переданный ему ImageIcon:

    можно взять рабочий пример с исходным кодом внутри.

    При создании данного компонента я бы выделил несколько важных моментов:

    1. Определяемся с функционалом и внешним видом компонента — в данном случае это область с размещенным на ней изображением, бордером вокруг изображения и 4мя ресайзерами по углам. Каждый из ресайзеров позволяет менять размер изображения. Также есть возможность передвигать изображение по области, «схватив» его за центр.
    2. Определяем все необходимые для работы компонента параметры — в данном случае это само изображение и его «опорные» точки (верхний левый и правый нижний углы). Также есть ряд переменных, которые понадобятся при реализации ресайза и драга изображения.
    3. Накидываем заготовку для компонента(желательно отдельный класс, если Вы собираетесь его использовать более раза) — в данном случае создаем класс ImageResizeComponent, определяем все необходимые для отрисовки параметры, переопределяем метод paintComponent() и отрисовываем содержимое. Также переопределяем метод getPreferredSize(), чтобы компонент сам мог определить свой «желаемый» размер.
    4. Реализовываем функциональную часть компонента — в данном случае нам будет достаточно своего MouseAdapter»а для реализации ресайза и передвижения. При нажатии мыши в области проверяем координаты и сверяем имх с координатами углов и самого изображения — если нажатие произошло в районе некого угла — запоминаем его и при драге изменяем его координату, ежели нажатие пришлось на изображение — запоминаем начальные его координаты и при перетаскивании меняем их. И наконец, последний штрих — в mouseMoved() меняем курсор в зависимости от контрола под мышью.

    Ничего сложного, правда? С реализацией «кнопочных» частей других компонентов всё еще проще — достаточно проверять, что нажатие пришлось в область кнопки. Параллельно с отслеживанием событий можно также визуально менять отображение компонента (как сделано в данном примере на ресайзерах). В общем сделать можно всё, на что хватит фантазии.

    Конечно, я просто описал свои шаги при создании компонентов — они не являются чем-то обязательным и могут быть легко расширены и дополнены.

    Важно помнить

    SwingUtilities.invokeLater (new Runnable()
    <
    public void run ()
    <
    // Здесь располагаете исполняемый код
    >
    >);

    Итоги

    Еще хотелось бы добавить, что возможно, название статьи может показаться Вам слишком громким и не полностью раскрытым — действительно, я все же не дизайнер и не юзабилити-специалист. Я лишь предлагаю Вам инструменты/способы, которые позволят расширить и улучшить интерфейс приложения. Непосредственно бОльшая (не обязательно вся) часть работы по созданию графики для слайдера/кнопки или определению общего стиля компонентов и самого приложения всегда остается за дизайнером — от этого никуда не уйти.

    Все примеры статьи в едином «флаконе». Из начального окна можно выбрать желаемый пример:

  7. interface
  8. dnd
  9. customization
  10. интерфейс
  11. кастомизация Добавить метки

    Экранной формой называется область, которая видна на экране в виде окна с различными элементами — кнопками, текстом, выпадающими списками и т.п. А сами эти элементы называются компонентами.

    Среды, позволяющие в процессе разработки приложения в интерактивном режиме размещать на формы компоненты и задавать их параметры, называются RAD-средами. RAD расшифровывается как Rapid Application Development — быстрая разработка приложений.

    В NetBeans и других современных средах разработки такой процесс основан на объектной модели компонентов, поэтому он называется Объектно-Ориентированным Дизайном (OOD – Object-Oriented Design).

    NetBeans является RAD-средой и позволяет быстро и удобно создавать приложения с развитым графическим пользовательским интерфейсом (GUI). Хотя языковые конструкции Java, позволяющие это делать, не очень просты, на начальном этапе работы с экранными формами и их элементами нет необходимости вникать в эти тонкости. Достаточно знать основные принципы работы с такими проектами.

    Во-первых, с самого начала осваивается создание полноценных приложений, которые можно использовать в полезных целях. Трудно месяцами изучать абстрактные концепции, и только став профессионалом иметь возможность сделать что-то такое, что можно показать окружающим. Гораздо интереснее и полезнее сразу начать применять полученные знания на практике.

    Во-вторых, такой интерфейс при решении какой-либо задачи позволяет лучше сформулировать, какие параметры надо вводить, какие действия и в какой последовательности выполнять, и что в конце концов получается. И отобразить всё это на экране: вводимым параметрам будут соответствовать пункты ввода текста, действиям – кнопки и пункты меню, результатам – пункты вывода текста.

    Пример открытия проекта с существующим исходным кодом.

    В NetBeans 5.0 имелся хороший пример GUI-приложения, однако в NetBeans 5.5 он отсутствует. Поэтому для дальнейшей работы следует скопировать аналогичный пример с сайта автора или сайта, на котором выложен данный учебный курс. Пример называется JavaApplicationGUI_example.

    Сначала следует распаковать zip-архив, и извлечь находящуюся в нём папку с файлами проекта в папку с вашими проектами (например, C:\Documents and Settings\User). Затем запустить среду NetBeans, если она не была запущена, и закрыть имеющиеся открытые проекты, чтобы они не мешали. После чего выбрать в меню File/Open Project, либо или на панели инструментов иконку с открывающейся фиолетовой папочкой, либо нажать комбинацию клавиш + +O. В открывшемся диалоге выбрать папку JavaApplicationGUI_example (лучше в неё не заходить, а просто установить выделение на эту папку), после чего нажать кнопку Open Project Folder.

    При этом, если не снимать галочку “Open as Main Project”, проект автоматически становится главным.

    В окне редактора исходного кода появится следующий текст:

    * @author Вадим Монахов

    public class GUI_application extends javax.swing.JFrame <

    * Creates new form GUI_application

    /** This method is called from within the constructor to

    * initialize the form.

    * WARNING: Do NOT modify this code. The content of this method is

    * always regenerated by the Form Editor.

    private void exitMenuItemActionPerformed(java.awt.event.ActionEvent evt)

    * @param args the command line arguments

    public static void main(String args) <

    public void run() <

    // Variables declaration — do not modify

    private javax.swing.JMenuItem aboutMenuItem;

    private javax.swing.JMenuItem contentsMenuItem;

    private javax.swing.JMenuItem copyMenuItem;

    private javax.swing.JMenuItem cutMenuItem;

    private javax.swing.JMenuItem deleteMenuItem;

    private javax.swing.JMenu editMenu;

    private javax.swing.JMenuItem exitMenuItem;

    private javax.swing.JMenu fileMenu;

    private javax.swing.JMenu helpMenu;

    private javax.swing.JMenuBar menuBar;

    private javax.swing.JMenuItem openMenuItem;

    private javax.swing.JMenuItem pasteMenuItem;

    private javax.swing.JMenuItem saveAsMenuItem;

    private javax.swing.JMenuItem saveMenuItem;

    // End of variables declaration

    Поясним некоторые его части. Указание пакета java_gui_example, в котором будет располагаться код класса приложения, нам уже знакомо. Декларация самого класса GUI_application в данном случае несколько сложнее, чем раньше:

    public class GUI_application extends javax.swing.JFrame

    Она означает, что задаётся общедоступный класс GUI_application, который является наследником класса JFrame, заданного в пакете swing, вложенном в пакет javax. Слово extends переводится как “расширяет” (класс-наследник всегда расширяет возможности класса-прародителя).

    Общедоступный конструктор GUI_application()создаёт объект приложения и инициализирует все его компоненты, методом initComponents(), автоматически генерируемом средой разработки и скрываемом в исходном коде узлом +Generated Code.

    Развернув узел, можно увидеть реализацию этого метода, но изменить код нельзя. Мы не будем останавливаться на том, что в нём делается.

    private void exitMenuItemActionPerformed

    Он будет обсуждаться чуть позже. Метод

    public static void main(String args)

    нам уже знаком – это главный метод приложения. Он является методом класса нашего приложения и автоматически выполняется Java-машиной при запуске приложения. В данном примере метод создаёт экранную форму приложения и делает её видимой. Для того, чтобы понять, как это делается, потребуется изучить довольно много материала в рамках данного курса.

    Запущенное приложение. Приложение с раскрытым меню.

    При запуске приложения экранная форма выглядит так, как показано на рисунке. В ней уже имеется заготовка меню, которое способно разворачиваться и сворачиваться, и даже работает пункт Exit – “Выход”. При нажатии на него происходит выход из приложения.

    Именно за нажатие на этот пункт меню несёт ответственность оператор exitMenuItemActionPerformed. При проектировании экранной формы он назначен в качестве обработчика события – подпрограммы, которая выполняется при наступлении события. В нашем случае событием является выбор пункта меню Exit, и при этом вызывается обработчик exitMenuItemActionPerformed. Внутри него имеется всего одна строчка

    Она вызывает прекращение выполнения метода main и выход из приложения с нулевым кодом завершения. Как правило, ненулевой код завершения возвращают при аварийном завершении приложения для того, чтобы по его значению можно было выяснить причины “вылета” программы.

    Редактор экранных форм

    Нажмём закладку Design (“дизайн”) в левой верхней части редактора исходного кода. При этом мы переключимся из режима редактирования исходного кода (активна закладка Source – “исходный код”) в режим редактирования экранной формы, как это показано на рисунке.

    Редактирование экранной формы.

    Вместо исходного кода показывается внешний вид экранной формы и находящиеся на ней компоненты. Справа от окна, в котором показывается экранная форма в режиме редактирования, расположены окна Palette (“палитра”) палитры компонентов и окно Properties (“свойства”) показа и редактирования свойств текущего компонента.

    Свойство – это поле данных, которое после изменения значения может проделать какое-либо действие. Например, при изменении значения ширины компонента отрисовать на экране компонент с новой шириной. “Обычное” поле данных на такое не способно. Таким образом, свойство – это “умное поле данных”.

    Палитра компонентов предназначена для выбора типа компонента, который нужен программисту для размещения на экранной форме. Например, добавим на нашу форму компонент типа JButton (сокращение от Java Button – “кнопка Java”). Для этого щёлкнем мышью по пункту JButton на палитре и передвинем мышь в нужное место экранной формы. При попадании мыши в область экранной формы на ней появляется кнопка стандартного размера, которая передвигается вместе с мышью. Щелчок в нужном месте формы приводит к тому, что кнопка остаётся в этом месте. Вокруг неё показываются рамка и маленькие квадратики, обозначающие, что наш компонент является выделенным. Для него осуществляется показ и редактирование свойств в окне Properties.

    Кроме того, от выделенного компонента исходят линии, к которым идет привязка для задания положения компонента на форме.

    По умолчанию надписи на компонентах задаются как имя типа, после которого идёт номер компонента. Но вместо заглавной буквы, в отличие от имени типа, используется строчная. Поэтому первая кнопка будет иметь надпись jButton1, вторая – jButton2, и так далее. Такие же имена будут приобретать автоматически создаваемые в исходном коде переменные, соответствующие кнопкам.

    Изменить надпись на кнопке можно несколькими способами. Во-первых, сделав по ней двойной щелчок, и отредактировав текст. Во-вторых, перейдя в окно Properties, изменив значение свойства Text и нажав для завершения ввода. В-третьих, изменив аналогичным образом свойство label. Наконец, можно в окне Properties отредактировать текст не в однострочном поле ввода значений для свойств Text или label, а открыв многострочный редактор путём нажатия на кнопку, находящуюся справа от пункта редактирования значения свойства. Однако многострочность редактора не помогает сделать надпись на кнопке многострочной.

    Введём на кнопке надпись “OK” – используем эту кнопку для выхода из программы.

    Редактирование свойств компонента

    Размер компонента задаётся мышью путём хватания за рамку и расширения или сужения по соответствующим направлениям. Установка на новое место – перетаскиванием компонента мышью.

    Некоторые свойства выделенного компонента (его размер, положение, текст) можно изменять непосредственно в области экранной формы. Однако большинство свойств просматривают и меняют в окне редактирования свойств. Оно состоит из двух столбцов: в левом показываются имена свойств, в правом – их значения. Значения, стоящие в правом столбце, во многих случаях могут быть отредактированы непосредственно в ячейках таблицы. При этом ввод оканчивается нажатием на или выходом из редактируемой ячейки, а отменить результаты неоконченного ввода можно нажатием .

    В правой части каждой ячейки имеется кнопка с надписью “…” – в современных операционных системах принято добавлять три точки в названии пунктов меню и кнопок, после нажатия на которые открывается диалоговое окно. В данном случае раскрывается окно специализированного редактора соответствующего свойства, если он существует.

    Если требуется просматривать и редактировать большое количество свойств компонента, бывает удобнее щёлкнуть правой кнопкой мыши по нужному компоненту и в появившемся всплывающем меню выбрать пункт “Properties”. В этом случае откроется отдельное окно редактирования свойств компонента. Можно держать открытыми одновременно произвольное количество таких окон.

    Булевские свойства в колонке значений свойств показываются в виде кнопок выбора checkbox – квадратиков с возможностью установки галочки внутри. Если галочки нет, значение свойства false, если есть – true.

    Перечислим на примере кнопки ряд некоторых важнейших свойств, которые можно устанавливать для компонентов. Многие из них относятся и к другим компонентам.

    Название свойства Что оно задаёт
    background Цвет фона
    componentPopupMenu Позволяет назначать всплывающее меню, появляющееся по нажатию правой кнопкой мыши в области компонента.
    font Фонт, которым делается надпись на компоненте.
    foreground Цвет фонта, которым делается надпись на компоненте.
    icon Картинка, которая рисуется на компоненте рядом с текстом.
    text Текст (надпись) на компоненте.
    toolTipText Всплывающая подсказка, появляющаяся через некоторое время при наведении курсора мыши на компонент.
    border Тип рамки вокруг компонента.
    borderPainted Рисуется ли рамка вокруг компонента.
    contentAreaFilled Имеется ли заполнение цветом внутренней области компонента (для кнопок оно создаёт эффект трёхмерности, без заполнения кнопка выглядит плоской).
    defaultCapable Способна ли кнопка быть “кнопкой по умолчанию”: при нажатии автоматически происходит нажатие “кнопки по умолчанию” (такая кнопка на экранной форме должна быть одна).
    enabled Доступен ли компонент. По умолчанию все создаваемые на форме компоненты доступны. Недоступные компоненты рисуются более блеклыми красками.

    В качестве примера добавим всплывающую подсказку для нашей кнопки: введём текст “Эта кнопка предназначена для выхода из программы” в поле, соответствующее свойству toolTipText. К сожалению, подсказка может быть только однострочной – символы перевода на новую строку при выводе подсказки игнорируются, даже если они заданы в строке программным путём.

    Наконец, зададим действие, которое будет выполняться при нажатии на кнопку – обработчик события (event handler) нажатия на кнопку. Для этого сначала выделим кнопку, после чего щёлкнем по ней правой кнопкой мыши, и в появившемся всплывающем меню выберем пункт Events/Action/actionPerformed.

    Назначение обработчика события

    Events означает “События”, Action – “Действие”, actionPerformed – “выполненное действие”.

    После этого произойдёт автоматический переход в редактор исходного кода, и там появится заготовка обработчика события:

    // TODO add your handling code here:

    Аналогичный результат можно получить и более быстрым способом – после того, как мы выделим кнопку в окне редактирования формы (Design), в окне Navigator показывается и выделяется имя этой кнопки. Двойной щелчок по этому имени в окне навигатора приводит к созданию заготовки обработчика события.

    Рядом с обработчиком jButton1ActionPerformed будет расположен уже имеющийся обработчик события, срабатывающий при нажатии на пункт меню “Выход”:

    private void exitMenuItemActionPerformed(java.awt.event.ActionEvent evt) <

    Заменим в нашем обработчике события строку с комментарием на код, вызывающий выход из программы:

    private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) <

    Теперь после запуска нашего приложения подведение курсора мыши к кнопке приведёт к появлению всплывающей подсказки, а нажатие на кнопку – к выходу из программы.

    Часто встречающийся случай – показ сообщения при наступлении какого-либо события, например – нажатия на кнопку. Этом случае вызывают панель с сообщением:

    Если классы пакета javax.swing импортированы, префикс javax.swing при вызове не нужен.

    Внешний вид приложения

    На этапе редактирования приложения внешний вид его компонентов соответствует платформе. Однако после запуска он становится совсем другим, поскольку по умолчанию все приложения Java показываются в платформо-независимом виде.:

    Внешний вид запущенного приложения с платформо-независимым пользовательским интерфейсом, задаваемым по умолчанию

    Кроме того, наше приложение появляется в левом верхнем углу экрана, а хотелось бы, чтобы оно появлялось в центре.

    Для того, чтобы показать приложение в платформо-ориентированном виде (то есть в том виде, который использует компоненты и настройки операционной системы), требуется изменить код конструктора приложения, вставив перед вызовом метода initComponents задание типа пользовательского интерфейса (User’s Interface, сокращённо UI):

    Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();

    Dimension frameSize = getSize();

    Внешний вид запущенного приложения с платформо-ориентированным пользовательским интерфейсом в операционной системе Windows ® XP

    Код, следующий после вызова initComponents(), предназначен для установки окна приложения в центр экрана.

    Имеется возможность задания ещё одного платформо-независимого вида приложения – в стиле Motiff, используемого в операционной системе Solaris ® . Для установки такого вида вместо вызова

    Внешний вид запущенного приложения с платформо-независимым пользовательским интерфейсом в стиле Motiff

    Использованные конструкции станут понятны читателю после изучения дальнейших разделов методического пособия.

    Для того, чтобы не запутаться в разных проектах и их версиях, особенно с учётом того, что учебные проекты бывает необходимо часто переносить с одного компьютера на другой, следует серьёзно отнестись к ведению проектов. Автором в результате многолетней практики работы с разными языками и средами программирования выработана следующая система (откорректированная в применении к среде NetBeans):

    · Под каждый проект создаётся папка с названием проекта. Будем называть её папкой архива для данного проекта. Названия используемых папок могут быть русскоязычными, как и имена приложений и файлов.

    · При создании нового проекта среда разработки предлагает ввести имя папки, где его хранить — следует указать имя папки архива. Кроме того, предлагается ввести имя проекта. Это имя будет использовано средой NetBeans для создания папки проекта, так и для названия вашего приложения. Для того, чтобы облегчить работу с вашим приложением в разных странах, рекомендуется делать это название англоязычным. В папке проекта среда разработки автоматически создаст систему вложенных папок проекта и все его файлы. Структура папок проектов NetBeans была описана ранее.

    · Если берётся проект с существующим исходным кодом, его папка копируется в папку нашего архива либо вручную, либо выбором соответствующей последовательности действий в мастере создания проектов NetBeans.

    · При получении сколько-нибудь работоспособной версии проекта следует делать его архивную копию. Для этого в открытом проекте в окне “Projects” достаточно щелкнуть правой кнопкой мыши по имени проекта, и в появившемся всплывающем меню выбрать пункт “Copy Project”. Откроется диалоговая форма, в которой предлагается автоматически образованное имя копии – к первоначальному имени проекта добавляется подчёркивание и номер копии. Для первой копии это _1, для второй _2, и так далее. Причём головная папка архива по умолчанию остаётся той же, что и у первоначального проекта. Что очень удобно, поскольку даёт возможность создавать копию всего тремя щелчками мышки без набора чего-либо с клавиатуры.

    Создание рабочей копии проекта

    Скопированный проект автоматически возникает в окне “Projects”, но не становится главным. То есть вы продолжаете работать с прежним проектом, и все его открытые окна сохраняются. Можно сразу закрыть новый проект – правой кнопкой мыши щёлкнуть по его имени, и в появившемся всплывающем меню выбрать пункт “Close Project”.

    Для чего нужна такая система ведения проектов? Дело в том, что у начинающих программистов имеется обыкновение разрушать результаты собственного труда. Они развивают проект, не сохраняя архивов. Доводят его до почти работающего состояния, после чего ещё немного усовершенствуют, затем ещё – и всё перестаёт работать. А так как они вконец запутываются, восстановить работающую версию уже нет возможности. И им нечего предъявить преподавателю или начальнику!

    Поэтому следует приучиться копировать в архив все промежуточные версии проекта, более работоспособные, чем уже сохранённые в архив. В реальных проектах трудно запомнить все изменения, сделанные в конкретной версии, и, что важнее, все взаимосвязи, вызвавшие эти изменения. Поэтому даже опытным программистам время от времени приходится констатировать: “Ничего не получается!” И восстанавливать версию, в которой ещё не было тех нововведений, которые привели к путанице. Кроме того, часто бывает, что новая версия в каких-то ситуациях работает неправильно. И приходится возвращаться на десятки версий назад в поисках той, где не было таких “глюков”. А затем внимательно сравнивать работу двух версий, выясняя причину неправильной работы более поздней версии. Или убеждаться, что все предыдущие версии также работали неправильно, просто ошибку не замечали.

  12. Внешняя политика СССР в годы войны. Ленд-лиз. Тегеранская конференция. Ялтинская и Потсдамская конференции 1945 г. Создание ООН.
  13. Внешняя политика СССР в годы войны.Ленд-лиз. Тегеранская конференция. Ялтинская и Потсдамская конференция 1945г.Создание ООН.
  14. Возобновелние деятельности БСГ. Создание белнац партий и организаций

    Мы догадываемся, что порядком утомили вас, рассказывая все время о программах вывода текстовых сообщений на консоль. На этом занятии эта «унылая» череда примеров будет, наконец, прервана: мы покажем как на Java создаются окна и вы убедитесь, что это простая задача. Вот наш код (обсуждать его мы начнем на следующем занятии, т.к. в нем много-много особенностей, знать которые действительно нужно):

    public class MoneyForNothing extends JFrame <

    setTitle («Добро пожаловать в Money for Nothing»);

    setSize (new Dimension (600, 400));

    public static void main (String args) <

    MoneyForNothing mfn = new MoneyForNothing ();

    А вот этот же код в окне редактирования FAR-а:

    Кстати, рекомендуем сразу набирать исходные коды программ в кодировке CP1251 (или в просторечии, в кодировке Windows): переключение кодировок осуществляется клавишей F8, а текущая кодировка высвечивается в строке состояния над областью редактирования.

    Точка входа осталась без изменений, а вот остальной код порядком изменился (но не будем забегать вперед). После компиляции и запуска вы должны увидеть следующее:

    Поздравляем – всего в несколько строк вы создали настоящее графическое окно! Его можно перетаскивать, изменять размеры, сворачивать, разворачивать и закрывать. Правда, окно у нас получилось какое-то блеклое, прямо сказать — «страшненькое». Кроме того, окно выводится в левом верхнем углу экрана, а хотелось бы в центре – там им удобнее пользоваться, да и выглядит такой вывод приятнее. Так что давайте займемся небольшой «полировкой».

    Сначала решим вторую задачу – центровка окна. Тут мы рекомендуем остановиться и подумать – как бы вы это сделали?

    Подскажем, что в графической библиотеке Java есть есть метод setLocation, которому в качестве параметров передаются координаты верхнего левого угла окна (именно от этого угла производится размещение других графических элементов внутри окна). Но если задать эти параметры «в лоб», то почти наверняка ничего путного не получится т.к. на другом мониторе с другим разрешением окно окажется совсем не там, где вы рассчитывали. Следовательно, координаты нужно задавать умнее.

    Все, что нужно для размещения окна по центру, это знать размеры самого окна (они, кстати, заданы в конструкторе и составляют прямоугольник 600 на 400 пикселей) и разрешение экрана, а потом, путем нехитрой арифметики, вычислить необходимые координаты левого верхнего угла. Это достигается путем размещения следующего кода

    Dimension sSize = Toolkit.getDefaultToolkit ().getScreenSize (),

    if (fSize.height > sSize.height)

    if (fSize.width > sSize.w >

    setLocation ((sSize.width — fSize.width)/2,

    непосредственно за строкой setSize (new Dimension (600, 400)); в конструкторе. Внесите необходимые изменения в исходный код, откомпилируйте программу и запустите на исполнение; окно должно появиться в центре экрана монитора.

    Теперь несколько слов о внешнем виде окна. Его странный вид объясняется тем, что разработчики Java стремились добиться того, чтобы вне зависимости от аппаратной платформы и программной «начинки», все графические элементы (окна, кнопки, списки и проч.) имели единую отрисовку и единую цветовую гамму. Для этого они разработали специальный стиль, который назвали «METAL». Если разработчик не предпримет специальных усилий, то элементы графического интерфейса в его программах будут выглядеть именно в этом стиле, без учета особенностей конкретных компьютеров и их программного обеспечения. В отдельных случаях в этом есть смысл, но все-таки, согласитесь, что гораздо лучше, если программа, запущенная на Windows будет похожа на windows-программу, а запущенная на LINUX будет похожа на linux-программу. Добиться этого легко. Все, что нужно — включить в точку входа, перед созданием экземпляра класса следующий код:

    catch (Exception lfe) <>

    Так мы и поступим. Теперь, после компиляции обновленной версии нашей программы и запуска ее на исполнение, графическое окно будет выглядеть гораздо «пристойнее»:

    В зависимости от настройки свойств экрана вашего монитора отображение окна будет отличаться; мы используем классическую тему Windows XP. У вас это же окно может выглядеть, например, так:

    Убедитесь, что все работает как ожидалось: окно выводится в центре экрана и его внешний вид соответствует ожидаемому.

    На этом мы закончим наше первое занятие, посвященное графическим интерфейсам. В нем мы показали «фасад», однако совершенно оставили «за бортом» множество вопросов, которые чрезвычайно важны и без которых невозможно программирование на Java вообще и графических интерфейсов в частности. Мы начнем заниматься этими вопросами на следующем занятии, а пока – поиграйтесь с тем исходным кодом, который есть.

    В качестве упражнения, рассчитайте, к примеру, координаты вывода нашего окна в правом нижнем углу экрана и проверьте результат.

    Другое упражнение проще по исполнению, но вам нужно будет воспользоваться документацией (надо же когда-то начинать, в самом деле): сделайте так, чтобы нельзя было изменять размеры окна, т.е. чтобы область системных кнопок выглядела так, как на рисунке

    (подсказка: ищите информацию по ключевым словам javax и JFrame). Так что, засучите рукава и удачи!

    Может случиться, что сформированное окно будет полностью или частично невидимо (из-за того, что вы неправильно рассчитали координаты его вывода на экран). Кнопки управления окна могут также оказаться недоступными. Как же прервать работу приложения не снимая задачу в «Диспетчере задач» или не перезагружая компьютер?

    Поскольку мы запускаем программы на исполнение из FAR-а, то прерывание исполнения программы на Java достигается нажатием комбинации клавиш Control-C (здесь «C» — латинская буква, не путайте ее со сходной по начертанию буквой кириллической).

    Цукерберг рекомендует:  Брендинг визуальная коммуникация. Разработка визуального языка бренда
Понравилась статья? Поделиться с друзьями:
Все языки программирования для начинающих